Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 1111-1121.doi: 10.3724/SP.J.1006.2023.22001

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere

TANG Wen-Qiang1,**(), ZHANG Wen-Long1,**, ZHU Xiao-Qiao1, DONG Bi-Zheng1, LI Yong-Cheng2, YANG Nan1, ZHANG Yao2, WANG Yun-Yue1,*(), HAN Guang-Yu1,*()   

  1. 1Key Laboratory of the Ministry of Education for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University/State Key Laboratory for Bio-resource Protection and Utilization in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Honghe Academy of Agricultural Sciences, Mengzi 661100, Yunnan, China
  • Received:2022-01-02 Accepted:2022-09-05 Online:2023-04-12 Published:2022-09-22
  • Contact: *E-mail: hanguangyu9745@163.com;E-mail: 1371209436@qq.com
  • About author:**Contributed equally to this work
  • Supported by:
    Yunnan Fundamental Research Projects(202201AT070265);National Natural Science Foundation of China(31800451);“High-level Talent Training Support Program” Specialized Project for Young Top Talents in Yunnan(YNWRQNBJ2020296)

Abstract:

In order to clarify the effects of mixture intercropping on the control of rice blast and the structure and function of the rhizosphere bacterial community, the 16S rRNA sequencing analysis of bacteria in rhizosphere soil of the selected high control efficiency (E=54.48%) (Shanyou 63/Huangkenuo) and low control efficiency (E=14.12%) combinations (Hexi 39/Huangkenuo) under the intercropping and monoculture treatments were performed with Illumina Hiseq sequencing technology. The results showed that soil bacteria, from 37 phyla, 116 classes, 244 orders, 384 families, 689 genera, were obtained in the intercropping system. Chloroflexi, Proteobacteria, and Actinobacteriota were the dominant bacterial groups. The relative abundance was higher than 15%. Alpha diversity analysis discovered that high-efficacy combination significantly increased the Shannon index and Chao1 index of rice rhizosphere bacterial community in intercropping conditions (P<0.05), whereas there was no difference at P>0.05 in low-efficiency combination. ANOSIM and PCoA analyses revealed that there was significant difference in the structure of the species in the rhizosphere bacterial community in monoculture (r = 0.48, P<0.01), but no significant difference in the rhizosphere bacterial community structure between the high- and low-efficiency combinations following intercropping (P>0.05), which indicating that intercropping increased the similarity of bacterial community structure between both combinations. Comparison to monoculture, the dominant bacterial group composition proved that the relative abundance of Shanyou63 Acidobacteriota decreased significantly, while the relative abundance of Shanyou 63 Actinobacteriota and Firmicutes increased significantly, but there was no significant difference among the dominant bacteria in Huangkenuo. Hexi 39 rhizosphere Patescilbacteria exhibited the significant decrease in low-efficiency combinations, whereas Gemmatimonadota showed the significant increase. PICRUSt2 function prediction discovered that the relative abundance of biosynthesis of other secondary metabolites in the main cultivars decreased significantly in the intercropping system, while the relative abundance of transcription, metabolism of cofactors and vitamins in intercropping cultivars increased significantly. In conclusion, to increase plant disease resistance and to provide data support for the theory of diverse intercropping for disease control, the high-efficacy combination had the ability to improve the diversity of rice rhizosphere bacteria and the structure and function of bacterial community by mixture intercropping, which effectively reduced the occurrence of rice blast and provided an application pathway for the improvement of soil microorganisms.

Key words: rice (Oryza sativa), mixture intercropping, high-throughput sequencing, bacterial community, bacterial diversity, functional prediction

Fig. 1

Schematic diagram of planting patterns and sampling points in rice a: diagram of mixture intercropping of rice; b: diagram of monoculture of rice; c: diagram of the paddy experiment plot. Hollow circles are main cultivars, solid circles are intercropping cultivars; boxes are rhizosphere soil sampling points. SY63: Shanyou 63; HX39: Hexi 39; HKN: Huangkenuo."

Fig. 2

Rice blast disease index of different intercropping combinations a: leaf blast disease index; b: panicle blast disease index. Mono: monoculture; Mix1: HKN||SY63; Mix2: HKN||HX39. “_” followed by the variety name. Abbreviations are the same as those given in Fig. 1. *: P < 0.05; ns: no significance."

Table 1

Optimized sequence and Alpha diversity index of samples"

样品
Sample name
优化序列数
Number of optimized sequences
香农指数
Shannon index
Chao1指数
Chao1 index
覆盖率
Coverage (%)
Mono_SY63 50,410.75±2228.10 6.85±0.05 b 5209.20±57.35 b 0.98±0.00
Mix1_SY63 49,091.00±2289.82 6.79±0.04 ab 5180.00±172.30 ab 0.97±0.00
Mono_HKN 44,599.00±1617.19 6.75±0.11 a 4879.60±242.87 a 0.97±0.00
Mix1_HKN 55,623.25±3698.34 6.90±0.05 b 5465.00±216.12 b 0.98±0.00
Mono_HX39 49,397.00±1588.52 6.85±0.07 ab 5140.80±194.01 ab 0.97±0.00
Mix2_HX39 50,410.75±2228.10 6.94±0.08 ab 5455.20±235.42 ab 0.97±0.00
Mix2_HKN 47,421.25±1516.07 6.75±0.18 ab 5004.60±274.35 ab 0.97±0.00

Fig. 3

PCoA and ANOSIM analysis of rhizosphere bacterial community structure a: the monoculture treatments for three varieties in rice; b: the monoculture treatments of SY63 and HKN; c: the intercropping treatment of SY63 and HKN; d: the monoculture treatments of HX39 and HKN; e: the intercropping treatment of HX39 and HKN. Abbreviations are the same as those given in Fig. 1."

Fig. 4

Dominant bacterial phyla and their differences a: the monoculture treatments for three varieties in rice; b: SY63 intercropping treatment; c: HKN intercropped with SY63; d: HX39 intercropping treatment; e: HKN intercropped with HX39; Abbreviations are the same as those given in Fig. 1. *: P < 0.05."

Fig. 5

Dominant bacterial orders and their differences a: the monoculture treatments for three varieties in rice; b: SY63 intercropping treatment; c: HKN intercropped with SY63; d: HX39 intercropping treatment; e: HKN intercropped with HX39; Abbreviations are the same as those given in Fig. 1. *: P < 0.05."

Fig. 6

Difference of KEEG predicted functional genes of the rhizosphere bacterial community in different treatments a: SY63; b: HKN intercropped with SY63; c: HX39; d: HKN intercropped with HX39. BOSM: biosynthesis of other secondary metabolites; EM: energy metabolism; MCV: metabolism of cofactors and vitamins; LM: lipid metabolism; XBM: xenobiotics biodegradation and metabolism; FSD: folding, sorting, and degradation; MTP: metabolism of terpenoids and polyketides; T: transcription; CAM: carbohydrate metabolism; CEM: cell motility; NM: nucleotide metabolism; *: P < 0.05."

[1] Redoña E D. Rice Biotechnology for Developing Countries in Asia. Science City of Muñoz: NABC, 2004. pp 201-201.
[2] Talbot N J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 2003, 57: 177-202.
doi: 10.1146/annurev.micro.57.030502.090957
[3] Pennisi E. Armed and dangerous. Science, 2010, 327: 804-805.
doi: 10.1126/science.327.5967.804 pmid: 20150482
[4] Liu W D, Liu J L, Triplett L, Leach J E, Wang G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014, 52: 213-241.
doi: 10.1146/annurev-phyto-102313-045926 pmid: 24906128
[5] Fernandez J, Orth K. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol, 2018, 26: 582-597.
doi: S0966-842X(17)30280-9 pmid: 29395728
[6] Keesing F, Belden L K, Daszak P, Dobson A, Harvell C D, Holt R D, Hudson P, Jolles A, Jones K E, Mitchell C E, Myers S S, Bogich T, Ostfeld R S. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468: 647-652.
doi: 10.1038/nature09575
[7] Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718-722.
doi: 10.1038/35021046
[8] Van Bruggen A H C, Finckh M R. Plant diseases and management approaches in organic farming systems. Annu Rev Phytopathol, 2016, 54: 25-54.
doi: 10.1146/annurev-phyto-080615-100123 pmid: 27215969
[9] 朱有勇. 遗传多样性与作物病害持续控制. 北京: 科学出版社, 2007. pp 364-385.
Zhu Y Y. Genetic Diversity for Corps Diseases’ Sustainable Management. Beijing: Science Press, 2007. pp 364-385. (in Chinese)
[10] 骆世明. 农业生物多样性利用的原理与技术. 北京: 化学工业出版社, 2010. pp 1-251.
Luo S M. Principles and Techniques of Agrobiodiversity Utilization. Beijing: Chemical Industry Press, 2010. pp 1-251 (in Chinese).
[11] Qin J H, He H Z, Luo S M, Li H S. Effects of rice-water chestnut intercropping on rice sheath blight and rice blast diseases. Crop Prot, 2013, 43: 89-93.
doi: 10.1016/j.cropro.2012.09.009
[12] Trivedi P, Leach J E, Tringe S G, Sa T, Singh B K. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol, 2020, 18: 607-621.
doi: 10.1038/s41579-020-0412-1
[13] Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 2011, 156: 989-996.
doi: 10.1104/pp.111.175448 pmid: 21606316
[14] Rodriguez P A, Rothballer M, Chowdhury S P, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant-microbiome interactions. Mol Plant, 2019, 12: 804-821.
doi: S1674-2052(19)30171-6 pmid: 31128275
[15] Jin X, Shi Y J, Wu F Z, Pan K, Zhou X G. Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Sci Agric, 2020, 77: e20190005.
doi: 10.1590/1678-992x-2019-0005
[16] Shi Y J, Wang J, Jin X, Wang Z L, Pan D D, Zhuang Y, Wu F Z, Zhou X G. Effects of intercropping of wheat on composition of cucumber seedling rhizosphere fungal community. Allelopathy J, 2019, 46: 97-106.
[17] Wu H M, Lin M H, Rensing C, Qin X J, Zhang S K, Chen J, Wu L K, Zhao Y L, Lin S, Lin W X. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant Soil, 2020, 454: 411-430.
doi: 10.1007/s11104-020-04659-1
[18] Li Y Y, Feng J, Zheng L, Huang J B, Yang Y, Li X H. Intercropping with marigold promotes soil health and microbial structure to assist in mitigating tobacco bacterial wilt. J Plant Pathol, 2020, 102: 731-742.
doi: 10.1007/s42161-020-00490-w
[19] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol, 2019, 37: 676-684.
doi: 10.1038/s41587-019-0104-4
[20] Xu N, Tan G C, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol, 2016, 74: 1-8.
doi: 10.1016/j.ejsobi.2016.02.004
[21] Chen S F, Zhou Y Q, Chen Y R, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890.
doi: 10.1093/bioinformatics/bty560
[22] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10: 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772
[23] 胡汉升, 宁万光, 徐畅, 余开会, 史洪中, 刘红敏. 水稻杂糯间作栽培防治稻瘟病的效果. 江苏农业科学, 2015, 43(4): 127-128.
Hu H S, Ning W G, Xu C, Yu K H, Shi H Z, Liu H M. Effectiveness of intercropping hybrids rice with glutinous rice for the control of rice blast. Jiangsu Agric Sci, 2015, 43(4): 127-128. (in Chinese)
[24] Han G Y, Lang J, Sun Y, Wang Y Y, Zhu Y Y, Lu B R. Intercropping of rice varieties increases the efficiency of blast control through reduced disease occurrence and variability. J Integr Agric, 2016, 15: 795-802.
doi: 10.1016/S2095-3119(15)61055-3
[25] Li Z F, Wang T, He C L, Cheng K L, Zeng R S, Song Y Y. Control of Panama disease of banana by intercropping with Chinese chive (Allium tuberosum Rottler): cultivar differences. BMC Plant Biol, 2020, 20: 432.
doi: 10.1186/s12870-020-02640-9
[26] 蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究. 土壤学报, 2016, 53: 305-310.
Cai Z C, Huang X Q. Soil-borne pathogens should not be ignored by soil science. Acta Petrol Sin, 2016, 53: 305-310. (in Chinese with English abstract)
[27] 杨俊, 王星, 付丽娜, 汪娅婷, 刘棋, 苗新利, 王凡, 魏兰芳, 姬广海. 水稻条斑病抗感品种根际微生物群落结构和功能分析. 生态科学, 2019, 38(1): 17-25.
Yang J, Wang X, Fu L N, Wang Y T, Liu Q, Miao X, Wang F, Wei L F, Ji G H. Study on rhizosphere microbial community and functional diversity of different resistant rice varieties to rice leaf streak disease. Ecol Sci, 2019, 38(1): 17-25. (in Chinese with English abstract)
[28] 胡蓉, 郑露, 刘浩, 黄俊斌. 秸秆还田对水稻根际微生物多样性和水稻纹枯病发生的影响. 植物保护学报, 2020, 47: 1261-1269.
Hu R, Zheng L, Liu H, Huang J B. Effects of straw returning on microbial diversity in rice rhizosphere and occurrence of rice sheath blight. J Plant Prot, 2020, 47: 1261-1269. (in Chinese with English abstract)
[29] 杨阳, 姚槐应. 间作下根际微生物控制土传病害的研究进展. 武汉工程大学学报, 2021, 43: 381-390.
Yang Y, Yao H Y. Progress in control of soil-borne diseases by rhizosphere microorganisms under intercropping. J Wuhan Inst Technol, 2021, 43: 381-390. (in Chinese with English abstract)
[30] Zhou L J, Wang Y J, Xie Z K, Zhang Y B, Malhi S S, Guo Z H, Qiu Y, Wang L. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. J Basic Microbiol, 2018, 58: 892-901.
doi: 10.1002/jobm.201800163
[31] 郝海平, 白红彤, 夏菲, 郝渊鹏, 李慧, 崔洪霞, 谢晓明, 石雷. 茶-山苍子间作对茶园土壤微生物群落结构的影响. 中国农业科学, 2021, 54: 3959-3969.
Hao H P, Bai H T, Xia F, Hao Y P, Li H, Cui H X, Xie X M, Shi L. Effects of tea-Litsea cubeba intercropping on soil microbial community structure in tea plantation. Sci Agric Sin, 2021, 54: 3959-3969. (in Chinese with English abstract)
[32] 张静, 可文静, 刘娟, 王留行, 陈浩, 彭廷, 赵全志. 不同深度土壤控水对稻田土壤微生物区系及细菌群落多样性的影响. 中国生态农业学报, 2019, 27: 277-285.
Zhang J, Ke W J, Liu J, Wang L X, Chen H, Peng T, Zhao Q Z. Influence of water controlling depth on soil microflora and bacteria community diversity in paddy soil. Chin J Eco-Agric, 2019, 27: 277-285. (in Chinese with English abstract)
[33] 艾超, 孙静文, 王秀斌, 梁国庆, 何萍, 周卫. 植物根际沉积与土壤微生物关系研究进展. 植物营养与肥料学报, 2015, 21: 1343-1351.
Ai C, Sun J W, Wang X B, Liang G Q, He P, Zhou W. Advances in the study of the relationship between plant rhizodeposition and soil microorganism. Plant Nutr Fert Sci, 2015, 21: 1343-1351. (in Chinese with English abstract)
[34] Pankratov T A, Ivanova A O, Dedysh S N, Liesack W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol, 2011, 13: 1800-1814.
doi: 10.1111/j.1462-2920.2011.02491.x pmid: 21564458
[35] Lu S, Gischkat S, Reiche M, Akob D M, Hallberg K B, Küsel K. Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol, 2010, 76: 8174-8183.
doi: 10.1128/AEM.01931-10
[36] Coates J D, Ellis D J, Gaw C V, Lovley D R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Evol Microbiol, 1999, 49: 1615-1622.
doi: 10.1099/00207713-49-4-1615
[37] Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhya V, Champreda V, Eurwilaichitr L. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb Ecol, 2011, 61: 518-528.
doi: 10.1007/s00248-010-9766-7 pmid: 21057783
[38] Gu Y, Ding Y, Ren C, Sun Z, Rodionov D A, Zhang W W, Yang S, Yang C, Jiang W H. Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics, 2010, 11: 255.
doi: 10.1186/1471-2164-11-255 pmid: 20406496
[39] 徐佳迎, 周金蓉, 吴杰, 王珏, 程粟裕, 赵鸽, 蒋静艳. 磺胺二甲嘧啶对稻田土壤微生物的中长期效应. 农业环境科学学报, 2020, 39: 1757-1766.
Xu J Y, Zhou J R, Wu J, Wang J, Cheng S Y, Zhao G, Jiang J Y. Medium- and long-term effects of the veterinary antibiotic sulfadiazine on soil microorganisms in a rice field. J Agro-Environ Sci, 2020, 39: 1757-1766. (in Chinese with English abstract)
[40] 王珂, 杨玉爱, 袁可能. 维生素(B6, C, PP)对小麦生理特性及生长的影响. 科技通报, 1995, 11: 301-305.
Wang K, Yang Y A, Yuan K N. Effects of three vitamins on the growth and physiological properties in wheat. Bull Sci Technol, 1995, 11: 301-305. (in Chinese with English abstract)
[1] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[2] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[3] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[4] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[5] Fang WANG,Jing-Sheng CHEN,Da-Wei LIU. Bacterial Diversity of Soybean Rhizosphere Soil under Different Cropping Patterns [J]. Acta Agronomica Sinica, 2018, 44(10): 1539-1547.
[6] Jun-Qiong SHI, Ya-Qin WANG, Tian-Quan ZHANG, Ling MA, Guang-Hua HE. Expression Pattern and Protein Localization of a Yellow-Green Leaf 6 (YGL6) Gene in Rice (Oryza sativa) [J]. Acta Agronomica Sinica, 2018, 44(05): 650-656.
[7] CAI Yan, HAO Ming-De, ZHANG Li-Qiong, ZANG Yi-Fei, HE Xiao-Yan. Effect of Cropping Systems on Microbial Diversity in Black Loessial Soil Tested by 454 Sequencing Technology [J]. Acta Agronomica Sinica, 2015, 41(02): 339-346.
[8] ZHOU Lan,YANG Yong,WANG Zhan-Hai,CHEN Fu,ZENG Zhao-Hai. Influence of Maize-soybean Rotation and N fertilizer on Bacterial Community Composition [J]. Acta Agron Sin, 2013, 39(11): 2016-2022.
[9] SUN Ai-Qing,ZHANG Jie-Dao,WAN Yong-Shan,LIU Feng-Zhen,ZHANG Kun,SUN Li. In silico Expression Profile of Genes in Response to Drought in Peanut [J]. Acta Agron Sin, 2013, 39(06): 1045-1053.
[10] YONG Ta-Wen, YANG Wen-Yu, XIANG Da-Bing, ZHU Zhen-Ying. Effect of Wheat/Maize/Soybean and Wheat/Maize/Sweet Potato Relay Strip Intercropping on Bacterial Community Diversity of Rhizosphere Soil and Nitrogen Uptake of Crops [J]. Acta Agron Sin, 2012, 38(02): 333-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!