Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 938-954.doi: 10.3724/SP.J.1006.2023.24066

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and expression analysis of SWEET genes from peanut genomes

SUN Quan-Xi1(), YUAN Cui-Ling1, MOU Yi-Fei1, YAN Cai-Xia1, ZHAO Xiao-Bo1, WANG Juan1, WANG Qi1, SUN Hui2, LI Chun-Juan1, SHAN Shi-Hua1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Northeast Agricultural University, Harbin 150038, Heilongjiang, China
  • Received:2022-03-25 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-18
  • Contact: *E-mail: shansh1971@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2021MC128);Shandong Elite Variety Project(2020LZGC001);Shandong Elite Variety Project(2021LZGC025);Agro-industry Technology Research System of Shandong Province(SDAIT-04-02)

Abstract:

SWEET (sugars will eventually be exported transporter) proteins are structurally conserved and energy independent sugar transporters, which play important roles in many physiological processes, such as plant growth development and response to biotic and abiotic stresses. At present, there is no research study about SWEET gene in peanut yet. In this study, we explored SWEET gene in the whole genome of peanut for the first time and analyzed its molecular characteristics and expression pattern in detail. These results showed that there were 55, 25, and 28 SWEET genes in the genomes of cultivated peanut and two ancestral wild peanuts, respectively, which were randomly and unevenly distributed on each chromosome. Orthologous genes from wild peanut and cultivated peanut usually shared the similar chromosome location, which confirmed that cultivated peanut originated from two ancestral wild peanuts. There were also some orthologous gene lost, which might be attributed to gene deletion or expansion during genome replication and doubling process. Gene structure and cis-elements in the promoter region were different in the SWEET genes, suggesting the diversity of biological functions. Phylogenetic analysis divided Arachis SWEET proteins into four subfamilies Clade I-Clade IV. Genes in the same clade of the same subfamily exhibited the similar gene structure. Based on Clevenger et al. tissue expression analysis, we found that some genes were tissue preferentially expressed, which provided a reference for further understanding the functional location of SWEET genes. Moreover, we identified several drought or salt stress responsive genes, such as AhSWEET3a and AhSWEET4e by re-analysis transcriptome expression data under abiotic stress and RT-qPCR. Their functions were still needed to be further identified. These results provide a theoretical reference for further analysis of SWEET gene function in peanut.

Key words: SWEET gene family, molecular characteristics, the relative expression pattern, abiotic stress, peanut

Table 1

PCR primers used in this study"

基因
Gene
正向引物
Forward sequence (5°-3°)
反向引物
Reverse sequence (5°-3°)
AhSWEET3a GATATATTCGTTGCGGGAC TGTCTTTCCTTTTCCAGTATC
AhSWEET3c ATATTTGTTGCGGGACCAAGT CTTTTCCGGTATTTGCAGTG
AhSWEET4e CTCTTTGTCCTGATAAGCAAT TTCCTTGCAGGAGCAATAG
AhSWEET14a CTACGTTACTCTCCCGAAC GTAGCTTCTCATCTTGAACC
AhSWEET14b CAACATCGAAGAAAGCAAGTT CCTTAATAATTCCAAACTCTC
AhSWEET14d GGATATCTATGTTACACTTCC CTCACGGGCTTGTTCTTC
AhSWEET15h CATATGCATTGCTCTGCCAAA TCTCTTCCTTTGTTTTGTTGC
AhSWEET17a CTCCAAAAGGCACTTTCTTT CATGATTTTTCTTCTGGCCAA

Table 2

SWEET gene family members in peanut genomes"

拟南芥同源基因
Homologous genes in Arabidopsis
基因名称
Gene ID
基因编号
Gene code
染色体位置
Chromosomal location
氨基酸长度Amino acid length (aa) 分子量MW
(kD)
理论等电点
Theoretical (pI)
MtN3/saliva/SWEET结构域位置
MtN3/saliva/SWEET domain position
跨膜区
TMD
AtSWEET1 AdSWEET1a Aradu.K52XK Chr8:9267256…9269602 222 24.3 9.55 104-190 6
AdSWEET1c Aradu.42GVF Chr6:102416530...102419691 244 26.7 8.71 7-96, 129-215 7
AiSWEET1b Araip.S4KSY Chr7:116428599…116430875 222 24.2 9.55 17-71, 104-190 6
AiSWEET1d Araip.1W4C1 Chr6:126537940…126541378 216 23.9 8.50 103-189 5
AhSWEET1a Arahy.3965TZ Chr17:124639742…124642102 246 27.0 9.30 6-95, 128-214 7
AhSWEET1b Arahy.9QS057 Chr8:9055736…9058263 246 27.1 9.30 6-95, 128-214 7
AhSWEET1c Arahy.070EBZ Chr6:107629228…107632964 227 25.0 8.93 7-96, 115-198 5
AhSWEET1d Arahy.92QAUW Chr16:140501345…140505058 222 24.3 9.32 7-96, 102-193 6
AtSWEET2 AdSWEET2a Aradu.28KIR Chr7:75718293...75721951 235 26.2 8.38 15-104, 137-223 7
AiSWEET2a Araip.8E1XH Chr3:135782137…135782998 216 24.1 6.40 55-144 5
AiSWEET2b Araip.RW4FB Chr8:42747070…42751934 222 24.6 5.09 15-73, 124-210 6
AiSWEET2c Araip.LSW2G Chr8:42679546…42683180 235 26.1 7.62 15-104, 137-223 7
AiSWEET2d Araip.ZP7QC Chr3:135779119…135779975 222 24.7 6.39 61-150 5
AhSWEET2b Arahy.0067NC Chr7:75623404…75627352 235 26.2 8.38 15-104, 137-223 7
AhSWEET2a Arahy.8S8XL0 Chr7:75586852…75596799 235 26.2 8.40 15-104, 137-223 7
AhSWEET2c Arahy.T9263C Chr18:38164093…38168064 352 39.8 7.01 15-104, 137-223 9
AtSWEET3 AdSWEET3b Aradu.0C27S Chr6:102696867...102699789 273 29.9 9.16 7-98, 133-219 7
AdSWEET3c Aradu.HBL25 Chr8:8606536…8607991 262 33.6 9.29 7-98, 132-218 7
AiSWEET3a Araip.REH1B Chr6:126858655…126861067 268 29.3 9.16 7-98, 133-219 7
AiSWEET3d Araip.7QQ27 Chr7:115102590…115104076 297 33.1 8.80 7-98, 167-253 7
AhSWEET3a Arahy.7NL1KT Chr16:140828255…140830164 246 27.2 9.27 4-76, 111-197 6
AhSWEET3b Arahy.FUEI9J Chr6:107865617…107869328 269 29.5 9.16 7-98, 133-219 7
AhSWEET3c Arahy.T958MW Chr8:8373613…8375544 286 29.0 9.02 7-98, 133-218 7
AhSWEET3d Arahy.USDQ8P Chr17:123218056…123220023 262 28.9 9.01 7-98, 132-218 7
AtSWEET4 AdSWEET4a Aradu.IX4YQ Chr5:99793946…99796067 242 26.8 8.68 9-98, 132-219 7
AdSWEET4e Aradu.T2X2K Chr5:96617432…96620296 226 25.0 8.55 9-96, 110-197 6
AdSWEET4h Aradu.ZB8C2 Chr5:99808879…99815495 250 27.6 9.08 9-98, 132-219 7
AdSWEET4i Aradu.GAX6N Chr8:45864882…45870280 100 11.5 9.94 6-64 3
AiSWEET4c Araip.ML28J Chr5:124657132…124659199 198 22.0 8.77 1-68, 82-169 5
AiSWEET4d Araip.JQ4TL Chr9:22944513…22947059 281 31.3 8.47 48-137, 171-258 8
AiSWEET4e Araip.793GC Chr5:129433061…129435840 248 27.6 8.72 9-98, 132-219 7
AiSWEET4j Araip.J86Y5 Chr5:124624546…124628766 250 27.8 9.18 9-98, 132-219 7
AhSWEET4a Arahy.555XQU Chr5:105662134…105663519 206 23.0 8.18 4-74, 96-183 8
AhSWEET4b Arahy.D0QYDS Chr20:141781184…141782559 224 25.6 9.04 4-77, 121-202 6
AhSWEET4c Arahy.K3L8DV Chr15:134629653…134631174 221 24.9 8.84 4-77, 111-198 6
AhSWEET4d Arahy.7WW6WM Chr19: 23346369…23350117 281 31.3 8.47 48-137, 171-258 7
AhSWEET4e Arahy.6E534E Chr5:102891039…102894100 248 27.6 8.72 9-98, 132-219 7
AhSWEET4f Arahy.78PE2K Chr15:139799000…139802016 250 28.0 8.65 30-100, 134-221 6
AhSWEET4g Arahy.6J07HI Chr15:134596895…134602246 250 27.8 9.18 9-98, 132-219 7
AhSWEET4h Arahy.FJF87M Chr5:105677242…105683115 250 27.6 9.19 9-98, 132-219 7
AhSWEET4i Arahy.UY8AVE Chr17:40936681…40937328 104 11.3 6.51 1-75 2
AtSWEET5 AdSWEET5a Aradu.93DN3 Chr1:69869107…69871113 227 25.8 8.82 9-98, 132-218 7
AdSWEET5b Aradu.H4VY0 Chr3:89372637…89374336 248 27.3 9.17 12-101, 135-216 7
AiSWEET5a Araip.0637R Chr1:100554587…100555063 125 14.3 9.45 5-93 3
AiSWEET5b Araip.2E2K8 Chr3:89091887…89093629 253 27.9 9.37 12-101, 135-221 7
AiSWEET5c Araip.N9ELU Chr1:100553386…100554554 140 16.2 8.95 46-131 4
AhSWEET5a Arahy.CT4JMD Chr11:111850823…111855576 827 91.9 8.13 692-765 4
AhSWEET5b Arahy.J6YH7R Chr1: 86826649…86831389 962 10.7 8.34 746-835, 869-955 7
AtSWEET7 AhSWEET7 Arahy.TFC15A Chr19:23496407…23501260 86 95.4 9.07 68-149, 173-259 7
AtSWEET9 AdSWEET9c Aradu.JS1AI Chr4:122862465…122865150 261 29.8 6.51 11-98, 132-218 7
AiSWEET9a Araip.BV9QU Chr3:439278…440730 239 27.3 8.19 1-76, 110-196 6
AiSWEET9c Araip.RTL2U Chr4:132851944…132854554 239 27.3 8.19 1-76, 110-196 6
AhSWEET9a Arahy.B7EMS2 Chr13:447142…449632 302 34.4 8.75 9-52 1
AhSWEET9b Arahy.D36163 Chr14:142500897…142503628 261 29.8 6.99 11-98, 132-218 7
AhSWEET9c Arahy.S3T63E Chr4:128065367…128068098 261 29.7 6.99 11-98, 132-218 7
AtSWEET10 AdSWEET10c Aradu.JR6CM Chr3:40489078…40490220 78 16.3 9.19 1-64 4
AdSWEET10d Aradu.XS7EJ Chr8:48311533…48314172 156 34.3 9.15 10-97, 162-229 7
AdSWEET10e Aradu.4S8PR Chr8:45870283...45873364 180 25.0 9.55 14-93, 146-213 5
AdSWEET10h Aradu.R8LYK Chr4:106216896…106217683 178 23.5 9.92 3-72, 106-192 6
AdSWEET10j Aradu.UZC91 Chr3:106064010…106065654 249 28.3 9.71 10-98, 132-218 7
AiSWEET10d Araip.NW3CH Chr8:128878406…128879824 297 17.6 8.06 33-106 3
AiSWEET10j Araip.AI6C6 Chr3:107769962…107771673 213 26.4 9.26 10-98 6
AhSWEET10a Arahy.2I1JD4 Chr18:134293195…134295606 203 32.6 9.25 8-95, 129-215 7
AhSWEET10b Arahy.443QJ6 Chr4:112235225…112235986 162 18.5 9.03 6-77 4
AhSWEET10c Arahy.LDZB47 Chr4:43437401…43438082 60 15.0 9.50 1-69 4
AhSWEET10d Arahy.5X4IC8 Chr8:50270957…50274308 285 32.8 9.05 10-97, 131-217 7
AhSWEET10e Arahy.58XTYC Chr8:47810282…47810830 109 12.6 5.17 1-60 3
AhSWEET10f Arahy.BQV36K Chr8:47807401…47807793 72 80.9 9.60 1-42 2
AhSWEET10g Arahy.V92L7T Chr8:47802082…47802616 76 89.8 10.17 1-43 1
AhSWEET10h Arahy.F35YNL Chr4:112236821…112237853 182 21.0 9.97 6-75, 109-175 5
AhSWEET10i Arahy.5R858N Chr13:117476330…117478145 249 28.3 9.71 10-98, 132-218 7
AhSWEET10j Arahy.5ZV8II Chr3:114918073…114919873 249 28.2 9.71 10-98, 132-218 7
AtSWEET14 AdSWEET14a Aradu.VJ1BE Chr8:48272679…48275246 301 24.3 8.57 8-95, 129-215 7
AdSWEET14d Aradu.U6YR6 Chr3:106101550…106103052 279 31.5 8.99 9-96, 131-217 7
AiSWEET14b Araip.W20Z4 Chr8:128825355…128827183 260 29.6 9.10 7-70, 131-208 6
AiSWEET14d Araip.X0SC5 Chr3:107805141…107806659 278 31.4 9.09 9-96, 131-217 7
AhSWEET14a Arahy.9TLR89 Chr18:134237012…134239717 264 30.4 6.77 8-95, 101-178 5
AhSWEET14b Arahy.DV46W1 Chr8:50231164…50233873 264 30.4 7.57 8-95, 111-178 5
AhSWEET14c Arahy.S8PXCS Chr3:114967061…114969119 279 31.5 8.99 9-96, 131-217 7
AhSWEET14d Arahy.ZMPK13 Chr13:117517211…117519601 344 38.8 8.91 9-96, 131-217 7
AtSWEET15 AdSWEET15i Aradu.8101U Chr4:123472889…123474884 287 31.8 9.06 10-97, 131-229 7
AdSWEET15j Aradu.5U8FQ Chr3:129837253...129840537 285 31.8 9.04 13-100, 134-220 7
AdSWEET15k Aradu.TVV1L Chr10:6211511…6213515 250 29.0 8.41 12-99 4
AdSWEET15m Aradu.BR4HD Chr3:129849290…129851008 172 19.6 9.65 12-98, 97-167 5
AiSWEET15d Araip.519SW Chr9:28810509…28814571 264 30.3 9.76 160-233 5
AiSWEET15e Araip.FWQ8E Chr10:10538850…10540643 292 32.5 8.81 11-98, 132-216 7
AiSWEET15f Araip.8Y88R Chr7:15516941…15518734 292 32.5 8.81 11-98, 132-216 7
AiSWEET15h Araip.99BCA Chr4:133515941…133517784 274 30.3 8.95 10-98, 132-217 7
AiSWEET15i Araip.Z7DRI Chr3:130664924…130667334 258 28.8 9.24 13-100, 134-216 7
AhSWEET15a Arahy.ANYB6V Chr13:115603608…115606491 343 38.1 9.55 183-256 2
AhSWEET15b Arahy.D1TE9J Chr14:12548365…12551538 373 41.8 9.95 181-255 2
AhSWEET15c Arahy.S28F9G Chr12:9945485…9951264 488 54.5 9.56 265-338 2
AhSWEET15d Arahy.P4WV5Z Chr19:29592152…29610025 375 42.3 9.69 145-237 2
AhSWEET15e Arahy.BFG4SY Chr20:11037095…11039132 250 28.0 9.03 11-98, 132-201 6
AhSWEET15f Arahy.YD7UU4 Chr10:5867956…5870716 288 32.0 8.95 12-99, 133-217 7
AhSWEET15g Arahy.C2ZJE6 Chr14:143132241…143134705 274 30.3 8.95 10-97, 131-217 7
AhSWEET15h Arahy.Y269WP Chr4:128696711…128699175 274 30.3 8.95 10-97, 131-217 7
AhSWEET15i Arahy.2H0Q3A Chr13:141355072…141358480 253 28.4 8.94 13-100 6
AhSWEET15j Arahy.5TG8XZ Chr3:138456949…138460261 293 32.8 8.49 13-100, 134-220 7
AhSWEET15k Arahy.J4JRGL Chr13: 141369029…141370440 144 16.7 9.43 43-130 4
AhSWEET15l Arahy.KZTL0S Chr3:138469501…138471333 233 26.4 9.59 12-99, 133-218 7
AhSWEET15n Arahy.Y9X9P4 Chr3:138488011…138489816 197 22.4 9.07 24-86, 116-189 5
AtSWEET17 AdSWEET17a Aradu.F9D34 Chr6:5690214…5692510 312 34.2 9.15 6-93, 127-213 7
AdSWEET17c Aradu.P8CD0 Chr4:17364376…17367186 222 24.5 5.61 21-108, 142-203 6
AiSWEET17a Araip.5K37A Chr6:12618373…12628766 192 21.8 9.27 1-83 2
AiSWEET17d Araip.LD519 Chr4:17245576…17249063 243 28.3 7.66 21-108, 145-231 7
AhSWEET17a Arahy.777NZN Chr6:5321486…5324822 300 33.7 9.28 9-98, 132-219 6
AhSWEET17b Arahy.NLT8YT Chr16:16641434…16643685 232 25.5 9.32 48-135, 169-232 7
AhSWEET17c Arahy.385DXU Chr4:17831697…17835610 244 26.8 7.78 59-97, 131-217 6
AhSWEET17d Arahy.QI357H Chr14:18059619…18063941 273 30.1 6.89 39-126, 160-246 7

Fig. 1

Chromosome location of SWEET genes on each chromosomes in peanut genomes"

Fig. 2

Phylogenetic tree of SWEET proteins among Arabidopsis, rice, and peanut At: Arabidopsis; Os: rice; Ad: wild peanut A. duranensis; Ai: wild peanut A. ipaensis; Ah: cultivated peanut A. hypogaea."

Fig. 3

Gene structure of SWEET genes in peanut"

Table 3

cis-elements in the putative promoter sequence of SWEET genes in peanut"

基因名称
Gene name
ABRE
元件
ABRE
ARE
元件
ARE
AuxRR核心区
AuxRR-
core
CGTCA结构域
CGTCA-
motif
DRE1
元件
DRE1
ERE元件
ERE
GCN4
结构域GCN4 motif
GARE
结构域
GARE-
motif
P盒
P-box
LTR元件
LTR
MBS
元件
MBS
富含TC重复序列
TC-rich repeats
TCA元件
TCA-
element
TGA元件
TGA-
element
TGACG结构域
TGACG-
motif
W盒
W-box
WUN
结构域WUN-motif
as-1
元件
as-1
AhSWEET1a 3 1 1 4 1 1 1
AhSWEET1b 3 1 1 4 1 1 1
AhSWEET1c 3 3 4 1 1 1 2 1 1
AhSWEET1d 7 2 2 4 1 2 2 2 1
AhSWEET2a 1 3 1 2 1 3 1 1
AhSWEET2b 3 1 4 2 1 2 1 1 1
AhSWEET2c 3 1 3 2 1 1 1 1 4 3 3 2 1
AhSWEET3a 5 1 2 1 1 1
AhSWEET3b 3 4 1
AhSWEET3c 5 1 1 1 1 1 1 1 1
AhSWEET3d 2 1 1 2 1 1 1 1 1
AhSWEET4a 3 3 3 1 2 3
AhSWEET4b 3 2 3 1 2 1 1 2
AhSWEET4c 3 2 3 1 1 1
AhSWEET4d 3 3 1 6 2 3 2 1
AhSWEET4e 2 3 1 1 1 2 1 1
AhSWEET4f 1 5 1 1 1 2 2
AhSWEET4g 5 1 3 1 1 1 4
AhSWEET4h 6 1 1 1 1 1 1 1 1
AhSWEET4i 2 3 2 1 2 2
AhSWEET5a 9 4 2 2 1 2 2 1 1 2
AhSWEET5b 8 3 2 1 1 1 1
AhSWEET7 1 2 1 1 2 1 1 2 1 2
AhSWEET9a 3 7 1 2 1 1 7 1 7
AhSWEET9b 2 1 3 1 1 2 3 1 3
AhSWEET9c 2 1 3 1 1 2 3 1 3
AhSWEET10a 3 1 3 1 1 1 1 1 1 1 1
AhSWEET10b 1 2 1 2 1 1
AhSWEET10c 4 3 1 1 2 1 1 1 1 1
AhSWEET10d 6 1 2 5 1 2 1 2 2 2 1 1 2
AhSWEET10e 2 1 1 2 1 1
AhSWEET10f 2 2 3 2 2
AhSWEET10g 3 1 1 2 1 1
AhSWEET10h 1 2 1 2 2
AhSWEET10i 7 1 6 1 1 1 1
AhSWEET10j 6 1 1 5 1 1 1
AhSWEET14a 10 2 1 2 1
AhSWEET14b 4 4 4 1
AhSWEET14c 10 1 2 2 1 1 1
AhSWEET14d 10 3 1 1 2 1 1
AhSWEET15a 1 3 3 1 1 3 1 1 3
AhSWEET15b 1 2 3 1 1 3 1 1 3
AhSWEET15c 1 3 2 1 1 2 1 1 2
AhSWEET15d 1 3 2 1 1 1 2 1 1 2
AhSWEET15e 6 2 1 3 1 1 1 1 1 2 1 1
AhSWEET15f 4 2 2 3 1 2 1 1 2
AhSWEET15g 4 1 1 7 1 1 1 1 1 1 1
AhSWEET15h 4 1 1 7 1 1 2 1 1 1 1 1
AhSWEET15i 8 1 1 1 1 1 2 1 1 1 1 1
AhSWEET15j 6 3 1 1 1 2 1 1 1
AhSWEET15k 6 8 1 3 1 1
AhSWEET15l 2 2 6 1 1 4 2
AhSWEET15m 2 2 1
AhSWEET17a 2 2 1 6 1 1 2 1 1 1 1
AhSWEET17b 2 2 1 4 1 1 1 2 1 1 1
AhSWEET17c 6 1 2 1 1 1
AhSWEET17d 5 1 2 1 1

Fig. 4

Relative expression patterns of SWEET genes in 22 different tissues and development stage of wild peanuts Arachis duranensis and Arachis ipaensis by RNA-seq"

Fig. 5

Relative expression pattern of AhSWEET genes under drought and salt stress treatments"

Fig. 6

Relative expression pattern of six peanut SWEET genes under drought and salt stress treatments"

[1] 代小冬, 杜培, 秦利, 刘华, 张忠信, 高伟, 刘娟, 徐静, 董文召, 张新友. 花生抗旱性研究进展. 热带作物学报, 2021, 42: 1788-1794.
Dai X D, Du P, Qin L, Liu H, Zhang Z X, Gao W, Liu J, Xu J, Dong W Z, Zhang X Y. Research progress of peanut drought resistance. Chin J Trop Crops, 2021, 42: 1788-1794. (in Chinese with English abstract)
[2] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种. 作物学报, 2021, 47: 556-565.
doi: 10.3724/SP.J.1006.2021.04107
Yan C X, Wang J, Zhao X B, Song X X, Jiang C S, Sun Q X, Yuan C L, Zhang H, Shan S H. Identification and screening of saline alkali tolerant peanut varieties in the whole growth period. Acta Agron Sin, 2021, 47: 556-565. (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04107
[3] Han S, Zhou X, Shi L, Zhang H, Geng Y, Fang Y, Xia H, Liu H, Li P, Zhao S, Miao L, Hou L, Zhang Z, Xu J, Ma C, Wang Z, Li H, Zheng Z, Huang B, Dong W, Zhang J, Tang F, Li S, Gao M, Zhang X, Zhao C, Wang X. The AhNPR3 regulates the gene expression of WRKY and PR genes, and mediate the immune response of peanut (Arachis hypogaea L.). Plant J, 2022, 110: 735-747.
doi: 10.1111/tpj.15700
[4] Anjali A, Fatima U, Manu M S, Ramasamy S, Senthil-Kumar M. Structure and regulation of SWEET transporters in plants: an update. Plant Physiol Biochem, 2020, 156: 1-6.
doi: 10.1016/j.plaphy.2020.08.043
[5] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606
[6] Yuan M, Wang S P. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047
[7] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005
[8] Chen L Q, Qu X Q, Hou B H. Sosso D, Osorio S. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351
[9] 胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33: 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Advances in the structure, function and regulation of plant sweet gene family. Biotechnol Bull, 2017, 33: 27-37. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
[10] Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. Iubmb Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993
[11] Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3: 942-955.
doi: 10.1093/mp/ssq044
[12] Le H R, Spinner L, Klemens P A, Chakraborti D, de Marco F, Vilaine F, Wolff N. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant, 2015, 8: 1687-1690.
doi: 10.1016/j.molp.2015.08.007
[13] Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiol, 2016, 170: 1460-1479.
doi: 10.1104/pp.15.01926
[14] Chen Q C, Hu T, Li X H, Song C P, Zhu J K, Chen L Q, Zhao Y. Phosphorylation of SWEET sucrose transporters regulates plant root : shoot ratio under drought. Nat Plants, 2022, 8: 68-77.
doi: 10.1038/s41477-021-01040-7
[15] Seo P J, Kang S K, Kim S G, Park J M, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[16] Klemens P, Patzke K, De Itmer J, Spinner L, Hir R L. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. J Exp Bot, 2012, 63: 4107-4121.
doi: 10.1093/jxb/ers093
[17] Liu X Z, Zhang Y, Yang C, Tian Z H, Li J X. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep, 2016, 6: 24563.
doi: 10.1038/srep24563 pmid: 27102826
[18] Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15in rice. Physiol Plant, 2020, 171: 620-637.
doi: 10.1111/ppl.13210
[19] Yao L, Ding C Q, Hao X Y, Zeng J M, Yang Y J, Wang X C, Wang L. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant Cell Physiol, 2020, 61: 1669-1682.
doi: 10.1093/pcp/pcaa091 pmid: 32645157
[20] Zhou A M, Ma H P, Feng S, Gong S F, Wang J G. SWEET17, a tonoplast-localized sugar transporter from Dianthus spiculifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis. Int J Mol Sci, 2018, 19: 1564.
doi: 10.3390/ijms19061564
[21] Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci, 2016, 7: 1446.
pmid: 27746793
[22] Zhao X B, Li C J, Wan S B, Zhang T T, Shan S H. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep, 2018, 45: 119-131.
doi: 10.1007/s11033-018-4145-4
[23] Zhang H, Zhao X B, Sun Q X, Yan C X, Wang J, Yuan C L, Li C J, Shan S H, Liu F Z. Comparative transcriptome analysis reveals molecular defensive mechanism of Arachis hypogaea in response to salt stress. Int J Genomics, 2020, 2020: 6524093.
[24] Chi X, Hu R, Yang Q, Zhang X, Pan L, Chen N, Chen M N, Yang Z, Wang T, He Y. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genomics, 2012, 287: 167-176.
doi: 10.1007/s00438-011-0665-5 pmid: 22203160
[25] Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan P. Genome-wide identification of the SWEET gene family in wheat. Gene, 2018, 642: 284-292.
doi: S0378-1119(17)31009-0 pmid: 29155326
[26] Manck-Gotzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci, 2016, 7: 487.
doi: 10.3389/fpls.2016.00487 pmid: 27148312
[27] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析. 作物学报, 2021, 47: 2184-2198.
doi: 10.3724/SP.J.1006.2021.04240
Li P, Liu C, Song H, Yao P P, Su P L, Wei Y W, Yang Y X, Li C Q. Identification and analysis of tobacco nonspecific lipid transfer protein gene family. Acta Agron Sin, 2021, 47: 2184-2198. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04240
[28] Bertioli D J, Cannon S B, Froenicke L, Huang G D, Cannon E K S, Liu X, Gao D Y, Clevenger J, Dash S, Ren L H, Farmer A D. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[29] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析. 作物学报, 2021, 47: 2394-2406.
doi: 10.3724/SP.J.1006.2021.04259
Xie P, Liu W, Kang Y, Hua W, Qian L W, Guan C Y, He X. Identification and expression analysis of CBF gene family in Brassica napus. Acta Agron Sin, 2021, 47: 2394-2406. (in Chinese with English abstract)
[30] Wang S, Yokosho K, Guo R, Whelan J, Shou H. The soybean sugar transporter GmSWEET15mediates sucrose export from endosperm to early embryo. Plant Physiol, 2019, 180: 2133-2141.
doi: 10.1104/pp.19.00641
[31] Sun M X, Huang X Y, Yang G, Yang J, Guan X F, Yang Z N. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod, 2013, 26: 83-91.
doi: 10.1007/s00497-012-0208-1
[32] Frank W, Márcio A F, Annick D, José L R, Elliot M M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet, 2006, 2: e117.
doi: 10.1371/journal.pgen.0020117
[33] Engel M L, Holmes-Davis R, McCormick S. Green sperm, identification of male gamete promoters in Arabidopsis. Plant Physiol, 2006, 141: 802-802.
doi: 10.1104/pp.104.900193
[1] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[2] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[3] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[4] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[5] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[6] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[7] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[8] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[9] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[10] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[11] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[12] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[13] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[14] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[15] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .