Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1860-1870.doi: 10.3724/SP.J.1006.2023.24259

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis

ZHAO Xi-Juan1,2(), LIU Sheng-Xuan2, LIU Teng-Fei2, ZHENG Jie2, DU Juan2, HU Xin-Xi1, SONG Bo-Tao2,*(), HE Chang-Zheng1,*()   

  1. 1Key Laboratory for Vegetable Biology of Hunan Province / ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops / Hunan Agricultural University, Changsha 410128, Hunan, China
    2Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Key Laboratory of Horticultural Plant Biology, Ministry of Education / Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-11-21 Accepted:2023-02-24 Online:2023-07-12 Published:2023-03-02
  • Contact: *E-mail: hecz@hotmail.com; E-mail: songbotao@mail.hzau.edu.cn E-mail:704986451@qq.com;songbotao@mail.hzau.edu.cn;hecz@hotmail.com
  • Supported by:
    The Third Batch of Modern Agricultural Industrial Technology System Project in Hubei Province(鄂采计[2020]-09533号);The China Agriculture Research System of MOF and MARA(CARS-09-P07)

Abstract:

Light-induced greening of tubers seriously affects its safety and economic benefits, but the mechanism of light-induced chlorophyll synthesis in potato tubers remains unclear. In this study, the related metabolites of potato tubers with different light durations were analyzed. The results were as follows: When the light duration prolonged, the chlorophyll content of the tubers gradually increased. Moreover, the chlorophyll content increased significantly at 36 hours, with which the tuber skin turned green obviously. Transcriptome sequencing and bioinformatics analysis were carried out on the samples taken at 0 hour, 6 hours, and 36 hours, and 5646 differentially expressed genes (DEGs) were identified. According to the co-expression cluster analysis and quantitative RT-PCR verification results, 9 major structure genes of chlorophyll biosynthesis pathway (StGAS1, StCHLD, StCrd1, StHEMA, StGUN4, StPORA, StUROD, StCHLM, and StCHLG) and 6 transcription factors (StSBP, StLSD, StGATA, StWRKY, StMYB-like, and StMYB113) were significant induced. Predictions of the cis-acting elements of the promoter sequences of these 9 structural genes indicated that they all contained multiple MYB binding sites. Promoter element analysis and transcriptional activation validation further revealed that StMYB113 had a light-responsive element and could activate the expression of StUROD in tobacco. Therefore, StMYB113 may be light-responsive and be able to regulate potato tuber greening in the light. This study provides a reference for the research on the regulatory mechanism of light-induced chlorophyll synthesis in potato tubers, which is important for reducing the loss caused by greening of potato tubers.

Key words: potato, light-induced greening, chlorophyll synthesis, StMYB113, transcriptional activation

Table 1

Primer sequences for qRT-PCR used in this study"

基因名称 正向引物 反向引物 基因ID
Gene name Forward primer (5°-3°) Reverse primer (5°-3°) Gene ID
GSA1 GTGGTGGGTTCATAAGGGGG TGGAGTGTGTGCTAAGCTGG Soltu.DM.04G005660.2
CHLD GACGCTAGTGGGAGTATGGC CCCCACCACAGGGAAGTTTT Soltu.DM.04G010510.1
Crd1 TGGTGCCAAGATGAGAACCG TGTGACATAAACCGAAAGGCA Soltu.DM.10G030260.1
HEMA GAGTGATTCATGGGAGAGATCCA GCAGGGTTCCAAAGTGAATGA Soltu.DM.04G031570.1
GUN4 TCGTTTTAGCCGGAGAAGCA TAACCGAATTTGCCGTCGCT Soltu.DM.06G028640.1
PORA GAGGGCAAAGCTAGTGCAAC TGACACCAGGAGAAGCAACC Soltu.DM.10G002270.1
UROD AGCTAGGCTTTCTCATTGTGT AAGCAAACCACAGAGACGGA Soltu.DM.06G011840.1
CHLM AACGCTAACGAATGGCAACG CGGCGAGGAGAAAGCCATAA Soltu.DM.03G032490.1
CHLG ACAACAACCCACTTCGCTCT TTATCCGGTGCCTGTGCTTT Soltu.DM.09G000240.1
SBP TCTGTCAACAATGCAGCCGA CTTCGCCTTTCGTTGTGTCC Soltu.DM.07G020030.1
LSD GCAGTAACAGCAGTACCACCT CACGAACATTGCACGCTTGT Soltu.DM.08G022900.1
GATA CAGCAGCGGAGAAAGTACGA GCCATCAACAAGAATGCTGCT Soltu.DM.12G001590.1
WRKY ACAGGGGTGAACACAACCAC GTCATTGCATACGGCTGCTC Soltu.DM.10G023760.1
MYB-like AAGACCTCAACCTCGGAACT TGCAACGTTTGTCGTCTTTGT Soltu.DM.10G020840.1
MYB113 TGGAACACACACCTACACAGG TCGAGGTCGTGGTCGTAGTA Soltu.DM.10G020780.1

Fig. 1

Change in phenotype and chlorophyll content of potato tubers of the RM-210 under light condition for 0-120 hours (A): the photographs of potato tubers were taken after 0, 6, 12, 36, 48, and 120 h of light exposure. (B): contents of chlorophyll a and chlorophyll b during 120 hours light exposure. Data are the averages of three replicates ± SDs. Different lowercase letters indicate the statistical differences between different groups by ANOVA (Tukey’s Method, P < 0.05)."

Fig. 2

Cluster diagrams and enrichment analysis of DEGs in tubers exposed at uninterrupted light for 0, 6, and 36 hours (A): principal component analysis of transcriptome data. (B): Volcano plot of DEGs for 6 h vs. 0 h and 36 h vs. 0 h. Blue rots represent genes of significant expression and gray rots were genes of nonsignificant expression. (C): GO enrichment analysis of DEGs. (D): the KEGG pathway analysis of DEGs."

Fig. 3

Cluster analysis of DEGs in tuber exposed to light for 0, 6, and 36 h"

Fig. 4

Relative expression pattern of genes involved in the synthesis of chlorophyll in greening potato tubers derived from RM-210 determined by qPCR (A): structural genes in the chlorophyll biosynthesis pathway; (B): RNA was extracted from the tuber epidermis under light at 22℃ for 0, 6, 36, and 48 h. The relative expression level of nine structural genes were determined by qRT-PCR. Different letters indicate significant difference between the different groups by ANOVA (Tukey’s Method, P < 0.05)."

Fig. 5

Verification of transcription factor expression by qPCR (A): qPCR results of 6 TFs selected in the transcriptome sequencing. (B): RNA-seq and qPCR data. (C): the correlation analysis of RNA-seq and qPCR results (Pearson Correlation Analysis). Different letters indicate significant difference between the different groups by ANOVA (Tukey’s Method, P < 0.05)."

Fig. 6

Prediction of cis-elements in promoters of structural genes (A) and transcription factors (B)"

Fig. 7

Transcriptional activation of structural gene promoter by MYB transcription factor EV: the co-injection of tobacco with the empty vector recombinant promoter of the structural gene; TF: the co-injection of tobacco with the transcription factor recombinant vector and the promoter recombinant vector of the structural gene. Asterisks indicate significant difference between EV and respective treatments by Student’s t-test (*: P < 0.05; **: P < 0.01)."

[23] Wang P R, Zhang F T, Gao J X. An overview of chlorophyll biosynthesis in higher plants. Acta Bot Boreal-Occident Sin, 2009, 29: 629-636. (in Chinese with English abstract)
[24] 李佳佳, 于旭东, 菜泽坪, 吴繁花, 罗佳佳, 郑李婷, 楚文清. 高等植物叶绿素生物合成研究进展. 分子植物育种, 2019, 17: 6013-6019.
Li J J, Yu X D, Cai Z P, Wu F H, Luo J J, Zheng L T, Chu W Q. An overview of chlorophyll biosynthesis in higher plants. Mol Plant Breed, 2019, 17: 6013-6019 (in Chinese with English abstract).
[25] Beale S. Green genes gleaned. Trend Plant Sci, 2005, 10: 309-312.
doi: 10.1016/j.tplants.2005.05.005
[26] Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17: 233-240.
doi: 10.1105/tpc.104.027276
[27] Gibson L C D, Marrison J L, Leech R M, Jensen P E, Bassham D C, Gibson M, Hunter C N. A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Plant Physiol, 1996, 111: 61-71.
pmid: 8685276
[28] Kumar A M, Söll D.Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol, 2000, 122: 49-56.
[29] 李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展. 生物技术通报, 2015, 31(10): 8-15.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.006
Li Z X, Chen X B. Research advances on plant inducible promoters and related cis-acting elements. Biotechnol Bull, 2015, 31(10): 8-15. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.006
[30] 瞿韵, 张宁, 常璟, 晋昕, 文义凯, 司怀军, 王蒂. 马铃薯光诱导型茎叶特异表达启动子ST-LS1的克隆与功能分析. 农业生物技术学报, 2013, 21: 828-837.
[1] 李辉尚, 乐姣. 2017年中国马铃薯市场形势回顾与2018年市场展望. 蔬菜, 2018, (6): 61-67.
Li H S, Le J. China’s potato market situation in 2017 and its prospect for 2018. Vegetable, 2018, (6): 61-67. (in Chinese with English abstract)
[2] Tanios S, Eyles A, Tegg R, Wilson C. Potato tuber greening: a review of predisposing factors, management and future challenges. Am J Potato Res, 2018, 95: 248-257.
doi: 10.1007/s12230-018-9648-y
[3] Jadhav S J, Salunkhe D K. Formation and control of chlorophyll and glycoalkaloids in tubers of Solanum tuberosum L. and evaluation of glycoalkaloid toxicity. Adv Food Res, 1975, 21: 307-354.
pmid: 1098418
[4] Okamoto H, Ducreux L J M, Allwood J W, Hedley P E, Wright A, Gururajan V, Taylor M A. Light regulation of chlorophyll and glycoalkaloid biosynthesis during tuber greening of potato S. tuberosum. Front Plant Sci, 2020, 11: 753.
doi: 10.3389/fpls.2020.00753 pmid: 32760410
[5] 郭凯, 侯留迪, 张莹莹, 周开明, 张丙林, 邹华文. 植物MYB基因家族研究进展. 长江大学学报(自然科学版), 2020, 17(6): 93-98.
Guo K, Hou L D, Zhang Y Y, Zhou K M, Zhang B L, Zou H W. Research progress of MYB gene family in plants. J Yangtze Univ (Nat Sci Edn), 2020, 17(6): 93-98 (in Chinese with English abstract).
[6] Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J, 2004, 37: 239-250.
doi: 10.1046/j.1365-313x.2003.01953.x pmid: 14690508
[7] Mahjoub A, Hernould M, Joubes J, Decendit A, Mars M, Barrieu F, Hamdi S, Delrot S. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism. Plant Physiol Biochem, 2009, 47: 551-561.
doi: 10.1016/j.plaphy.2009.02.015
[8] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu C L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137
[30] Qu Y, Zhang N, Chang J, Jin X, Wen Y K, Si H J, Wang D. Cloning and functional analysis of light-inducible, and stem and leaf-specific expression promoter ST-LS1 in potato. J Agric Biotechnol, 2013, 21: 828-837. (in Chinese with English abstract)
[31] 黄海群, 林拥军. 水稻rbcS基因启动子的克隆及结构功能分析. 农业生物技术学报, 2007, 15: 451-458.
Huang H Q, Lin Y J. Cloning and functional anlysis of the rice rbcS gene promoter. Chin J Agric Biotechnol, 2007, 15: 451-458. (in Chinese with English abstract)
[32] Sujit R, Swarup R C, Sanjay K S, Kali P D. Functional analysis of lightregulated promoter region of AtPolλ gene. Planta, 2012, 235: 411-432.
doi: 10.1007/s00425-011-1517-6 pmid: 21947619
[33] Zhang L, Yang T, Li X Y, Hao H Y, Xu S T, Cheng W, Sun Y L, Wang C Y. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue. Plant Physiol Biochem, 2014, 78: 88-96.
doi: 10.1016/j.plaphy.2014.02.019
[34] Luo Q L, Li Y G, Gu H Q, Zhao L, Gu X P, Li W B. The promoter of soybean photoreceptor GmPLP1gene enhances gene expression under plant growth regulator and light stresses. Plant Cell Tissue Organ Cult, 2013, 114: 109-119.
doi: 10.1007/s11240-013-0310-6
[35] Jeong Y S, Choi H, Kim J K, Baek S A, You M K, Lee D, Lim S H, Ha S H. Overexpression of OsMYBR22/OsRVE1transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains. Metab Eng, 2022, 70: 89-101.
doi: 10.1016/j.ymben.2021.12.014 pmid: 35032672
[9] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176-185.
doi: 10.1016/j.tplants.2014.12.001 pmid: 25577424
[10] Quattrocchio F, Wing J F, van der Woude K, Mol J N M, Koes R. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J, 1998, 13: 475-488.
doi: 10.1046/j.1365-313x.1998.00046.x pmid: 9680994
[11] Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell, 2006, 18: 1274-1291.
doi: 10.1105/tpc.105.034041 pmid: 16603655
[12] Cao C, Qiu Z K, Wang X T, Van Giang T, Liu X L, Wang J, Wang X X, Gao J C, Guo Y M, Du Y C, Wang G P, Huang Z J. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. J Exp Bot, 2017, 68: 5745-5758.
doi: 10.1093/jxb/erx382 pmid: 29186488
[13] Li L Z, Li S H, Ge H Y, Shi S L, Li D L, Liu Y, Chen H Y. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.). Planta, 2021, 255: 12.
doi: 10.1007/s00425-021-03698-x
[14] Wu M B, Xu X, Hu X W, Liu Y D, Cao H H, Chan H E, Gong Z H, Yuan Y J, Luo Y Q, Feng B H, Li Z G, Deng W. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiol, 2020, 183: 854-868.
doi: 10.1104/pp.20.00156
[15] 撒世娟, 伍涵宇, 张晓萍, 郑蕊, 姚新灵. 叶绿素结合蛋白CP24介导光照响应基因StRSM1调控叶绿素积累. 生物技术学报, 2021, 37: 198-204.
Sa S J, Wu H Y, Zhang X P, Zheng R, Yao X L. Light-responding gene StRSM1 mediated by chlorophyll-binding protein CP24 Regulates chlorophyll accumulation. Biotechnol Bull, 2021, 37: 198-204. (in Chinese with English abstract)
[16] Wassie M, Zhang W H, Zhang Q, Ji K, Chen L. Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy, 2019, 9: 597.
doi: 10.3390/agronomy9100597
[17] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[18] Zhu Y S, Merkle-Lehman D L, Kung S D. Light-induced transformation of amyloplasts into chloroplasts in potato tubers. Plant Physiol, 1984, 75: 142-145.
doi: 10.1104/pp.75.1.142 pmid: 16663559
[19] Muraja-Fras J, Krsnik-Rasol M, Wrischer M. Plastid transformation in greening potato tuber tissue. J Plant Physiol, 1994, 144: 58-63.
doi: 10.1016/S0176-1617(11)80993-4
[20] Ljubičić J M, Wrischer M, Ljubešić N. Formation of the photosynthetic apparatus in plastids during greening of potato microtubers. Plant Physiol Biochem, 1998, 36: 747-752.
doi: 10.1016/S0981-9428(98)80025-9
[21] Grunenfelder L, Hiller L K, Knowles N R. Color indices for the assessment of chlorophyll development and greening of fresh market potatoes. Postharvest Biol Technol, 2006, 40: 73-81.
doi: 10.1016/j.postharvbio.2005.12.018
[22] Zhang W N, Zuo C W, Chen Z J, Kang Y C, Qin S H. RNA Sequencing reveals that both abiotic and biotic stress-responsive genes are induced during expression of steroidal glycoalkaloid in potato tuber subjected to light exposure. Genes (Basel), 2019, 10: 920.
doi: 10.3390/genes10110920
[23] 王平荣, 张帆涛, 高家旭. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009, 29: 629-636.
[1] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[2] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[3] SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001.
[4] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[5] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[6] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[7] CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905.
[8] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[9] LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995.
[10] ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005.
[11] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[12] WANG Shuo, BAO Tian-Yang, LIU Jian-Gang, DUAN Shao-Guang, JIAN Yin-Qiao, LI Guang-Cun, JIN Li-Ping, XU Jian-Fei. Potato tuber greening evaluation based on RGB color space [J]. Acta Agronomica Sinica, 2023, 49(4): 1102-1110.
[13] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[14] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[15] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .