Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2288-2295.doi: 10.3724/SP.J.1006.2023.22056

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice

JIA Lu-Qi(), SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun(), and WANG Xiao-Wen()   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716, China
  • Received:2022-09-27 Accepted:2022-11-25 Online:2023-08-12 Published:2022-12-02
  • Contact: SANG Xian-Chun,and WANG Xiao-Wen E-mail:632063809@qq.com;sangxianchun@163.com;xwwang78@126.com
  • Supported by:
    Natural Science Foundation of Chongqing, China(cstc2020jcyj-msxm0539);National Key Research and Development Program of China(2022YFD1201600);College Students’ Innovation and Entrepreneurship Training Scientific Research Project(202210635039);National Natural Science Foundation of China(32171964)

Abstract:

Rice seed absorbed water and germinated rapidly in the paddy field, which could reduce the probability of damage from the pest and germs by shortening the stay time in soil, and thus enhancing seed surviving rate and facilitating the formation of strong seedlings. To exploer the molecular mechanism of seed germination, a mutant rgs1 (exhibiting rapid seed germination, dwarfism, and multi-tillers etc) was identified by screening the EMS (ethyl methanesulfonate) induced library of Jinhui 10 (WT). The dwarfism of rgs1 originated from the shortened internodes and the characteristic of multi-tiller was caused by the rapid growth of tiller buds. Genetic analysis showed that the mutational traits of rgs1 was controlled by a single recessive nuclear gene. LOC_Os12g21710, encoding a chloroplast ζ-carotene isomerase in the mapping region, had a base substitution (G in rgs1 and A in wild type) in the third exon, resulting in the earlier termination of protein translation, which was regarded as the candidate gene of RGS1. The qRT-PCR analysis showed that, compared with WT, the relative expression levels of HTD1, D27, and D10 controlling strigolactone (SLs) synthesis and of D14 and TB1 regulating SLs signal transduction decreased significantly and the relative expression level of D53 acting as a repressor of SLs signaling increased significantly, suggesting that the mutational characteristics of rgs1 were related with the SLs pathway. The transcriptional level of OsNCED1, encoding a key enzyme of abscisic acid (ABA) synthesis, was almost absent in rgs1, while the relative expression levels of MOC3 and FON1 were significantly enhanced, indicating that the rapid seed germination of rgs1 was associated with the defect of ABA synthesis. Therefore, we predicted that RGS1 should be a key gene regulating the cooperation of SL and ABA pathway, thus regulating seed germination, plant height, and tiller number in rice.

Key words: rice (Oryza sativa L.), tillering dwarf, seed germination, chloroplast ζ-carotene isomerase (T20/MIT1), abscisic acid (ABA)

Table 1

Primer sequences used for gene mapping and qPCR analysis"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
In12-1 GCTATGTCAAACACGGTCTTATT CTGGTGTATCCAACGCTTGT
In12-2 AGAGAGAGGAGAGGCTAGAG AAGTAGTTTGATTCTTTCATCCC
ACTIN GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
HTD1 TCAAGCTGCTCCTACCAGTGGTT TGGTTGGCGTAGCTTGGGTTT
D27 GATGGCTACGAGAGCCTGATAGAT AGATTCCATAACCTCACACGGC
D10 CGTTCGTGACGTTCCACTTCATC TGTTGGCGTTGTGCTCGCA
D14 TTCTTGAACGACAGCGACTACCAC TTGAAGAGGGTGCGGCTGAA
D53 AAACGGTCACCTCTTGCTGCA TGTCATTCCTGTTAGGACCACGG
D3 TCAACCCACGGTTCAGCGATT TCCAGCACATTGTGCTGGAGAT
TB1 ATGGACATACCGCTTTACCAACAG GGTGGTAGTAGAAGAAGGTGGAATG
MOC3 GATCAAGATCCTGCGGGAGCTGTAC GAGGCGCTTCTTCTGGCGCTC
FON1 TGCGTGAAGGAGGACAACATCATC AGCAGCAGGTTCGTCTCCCTGTT

Fig. 1

Morphological characteristics and the relative expression levels of key genes in seed germination and abscisic acid synthesis between wild type (WT) and mutant rgs1 A-D: morphological characteristics of WT and rgs1 seeds that were seeded and germinated on the bud bed for 1 d (Fig. A), 2 d (Fig. B), 3 d (Fig. C), and 4 d (Fig. D), respectively. Bar: 5 mm; E: radicle length of WT and rgs1 seeds after sowing; D2: seed germination for 48 h; D3: seed germination for 72 h; D4: seed germination for 96 h; F-H: the qRT-PCR analysis of key genes regulating ABA synthesis at the radicle section; *: P < 0.05; **: P < 0.01."

Fig. 2

Comparison of morphology and cytology between wild type (WT) and mutant rgs1 A: the plant of WT and rgs1 at tillering stage, bar: 20.00 cm; B: the plant of WT and rgs1 at maturity stage, bar: 20.00 cm; C: the panicle and internodes of WT and rgs1 (listing from left to right), bar: 5.00 cm; D: plant height components of WT and rgs1 (PL presents panicle length, 1st, 2nd, 3rd, 4th, and 5th indicate the corresponding internode length, respectively); E: the number of effective panicles of WT and rgs1; F, G: paraffin section of WT and rgs1 based on the tiller bud position at four-leaf stage, the red arrow points to the tiller buds, bar: 200 μm; *: P < 0.05; **: P < 0.01."

Fig. 3

Gene mapping and identification of RGS1 candidate genes A: gene mapping of the RGS1 on chromosome 12; B: frame diagram of LOC_Os12g21710, the candidate of RGS1, and the black rectangles represent exons; C: the sequence of mutational position in wild-type and mutant rgs1. * represents the mutational loci, and red letter represents the mutant base."

Fig. 4

Relative expression level of genes controlling rice tiller development between wild type (WT) and mutant rgs1 A: the relative expression pattern of RGS1 genes in wild type Jinhui 10; B-H: the relative expression level of genes regulating tiller growth in WT and rgs1; **: P < 0.01."

[1] Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 629: 3289-3309.
[2] Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565
[3] Liu L F, Lai Y Y, Cheng J Q, Wang L, Du W L, Wang Z F, Zhang H S. Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice. PLoS One, 2014, 9: e115732.
doi: 10.1371/journal.pone.0115732
[4] Jiang W, Lee J, Jin Y M, Qiao Y, Piao R, Jang S M, Woo M O, Kwon S W, Liu X, Pan H Y, Du X, Koh H J. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Mol Cells, 2011, 31: 385-392.
doi: 10.1007/s10059-011-0049-z pmid: 21399992
[5] Jiang N F, Shi S L, Shi H, Khanzada H, Wassan G M, Zhu C L, Peng X S, Yu Q Y, Chen X R, He X P, Fu J R, Hu L F, Xu J, Ouyang L J, Sun X T, Zhou D H, He H H, Bian J M. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017, 8: 1223.
doi: 10.3389/fpls.2017.01223 pmid: 28747923
[6] He Y Q, Yang B, He Y, Zhan C F, Cheng Y H, Zhang J H, Zhang H S, Cheng J P, Wang Z F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J, 2019, 97: 1089-1104.
doi: 10.1111/tpj.2019.97.issue-6
[7] Zhao J, He Y Q, Huang S L, Wang Z F. Advances in the identification of quantitative trait loci and genes involved in seed vigor in rice. Front Plant Sci, 2021, 12: 659307.
doi: 10.3389/fpls.2021.659307
[8] He Y, Chen S S, Liu K X, Chen Y J, Cheng Y H, Zeng P, Zhu P W, Xie T, Chen S L, Zhang H S, Cheng J P. OsHIPL1, a hedgehog-interacting protein-like 1 protein, increases seed vigour in rice. Plant Biotechnol J, 2022, 20: 1346-1362.
doi: 10.1111/pbi.v20.7
[9] Shen Y, Shen L K, Shen Z X, Jing W, Ge H L, Zhao J Z, Zhang W H. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2015, 38: 2766-2779.
doi: 10.1111/pce.12586
[10] Tang L Q, Xu H Y, Wang Y F, Wang H M, Li Z Y, Liu X X, Shu Y Z, Li G, Liu W N, Ying J Z, Tong X H, Yao J L, Xiao W F, Tang S Q, Ni S, Zhang J. OsABF1 represses gibberellin biosynthesis to regulate plant height and seed germination in rice (Oryza sativa L.). Int J Mol Sci, 2021, 22: 12220.
doi: 10.3390/ijms222212220
[11] Feng L, Gao Z R, Xiao G Q, Huang R F, Zhang H W. Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA responsive genes in rice. Plant Mol Biol Rep, 2014, 32: 1158-1168.
doi: 10.1007/s11105-014-0718-0
[12] Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA, 2010, 107: 5792-5797.
doi: 10.1073/pnas.0911965107
[13] Sun L L, Yuan Z, Wang D X, Li J B, Shi J, Hu Y Y, Yu J, Chen X F, Chen S X, Liang W Q, Zhang D B. Carbon starved anther modulates sugar and ABA metabolism to protect rice seed germination and seedling fitness. Plant Physiol, 2021, 187: 2405-2418.
doi: 10.1093/plphys/kiab391 pmid: 34618084
[14] Song S, Wang G F, Wu H, Fan X W, Liang L W, Zhao H, Li S L, Hu Y, Liu H Y, Ayaad M, Xing Y Z. OsMFT2is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. Plant J, 2020, 103: 532-546.
doi: 10.1111/tpj.v103.2
[15] Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA, 1999, 96: 15348-15353.
doi: 10.1073/pnas.96.26.15348 pmid: 10611387
[16] Ye H, Feng J H, Zhang L H, Zhang J F, Mispan M S, Cao Z Q, Beighley D H, Yang J C, Gu X Y. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiol, 2015, 169: 2152-2165.
doi: 10.1104/pp.15.01202 pmid: 26373662
[17] Hu Y, Song S, Weng X Y, You A Q, Xing Y Z. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins. Crop J, 2021, 9: 297-304.
doi: 10.1016/j.cj.2020.09.004
[18] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143
[19] Ito S, Yamagami D, Asami T. Effects of gibberellin and strigolactone on rice tiller bud growth. J Pestic Sci, 2018, 43: 220-223.
doi: 10.1584/jpestics.D18-013 pmid: 30363138
[20] Liu X, Hu Q L, Yan J J, Sun K, Liang Y, Jia M R, Meng X B, Fang S, Wang Y Q, Jing Y H, Liu G F, Wu D X, Chu C C, Smith S M, Chu J F, Wang Y H, Li J Y, Wang B. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant, 2020, 13: 1784-1801.
doi: 10.1016/j.molp.2020.10.001 pmid: 33038484
[21] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512-1525.
doi: 10.1105/tpc.109.065987 pmid: 19470589
[22] Zou J H, Zhang S Y, Zhang W P, Li G, Chen Z X, Zhai W X, Zhao X F, Pan X B, Xie Q, Zhu L H. The rice HIGH- TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687-698.
doi: 10.1111/tpj.2006.48.issue-5
[23] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/ DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019-1029.
doi: 10.1111/j.1365-313X.2007.03210.x
[24] Liu T Z, Zhang X, Zhang H, Cheng Z J, Liu J, Zhou C L, Luo S, Luo W F, Li S, Xing X X, Chang Y Q, Shi C L, Ren Y L, Zhu S S, Lei C L, Guo X P, Wang J, Zhao Z C, Wang H Y, Zhai H Q, Lin Q B, Wan J M. Dwarf and high tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell, 2022, 34: 3301-3318.
doi: 10.1093/plcell/koac169
[25] Zhao J F, Wang T, Wang M X, Liu Y Y, Yuan S J, Gao Y A, Yin L, Sun W, Peng L X, Zhang W H, Wang J M, Li X Y. Dwarf3participates in an scf complex and associates with dwarf14 to suppress rice shoot branching. Plant Cell Physiol, 2014, 55: 1096-1109.
doi: 10.1093/pcp/pcu045
[26] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14 SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406-410.
doi: 10.1038/nature12878
[27] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405.
doi: 10.1038/nature12870
[28] Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, Zhang C W, Ling Y H, Yang Z L, He G H. Abnormal vascular bundles regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017, 213: 275-286.
doi: 10.1111/nph.14142 pmid: 27545518
[29] 陶怡然, 熊毓贞, 谢佳, 田维江, 张晓琼, 张孝波, 周倩, 杨正林, 桑贤春, 王晓雯. 水稻矮化大粒突变体sdb1的鉴定与基因定位. 作物学报, 2018, 44: 1621-1630.
doi: 10.3724/SP.J.1006.2018.01621
Tao Y R, Xiong Y Z, Xie J, Tian W J, Zhang X Q, Zhang X B, Zhou Q, Sang X C, Wang X W. Identification and gene mapping of sdb1mutant with a semi-dwarfism and bigger seed in rice. Acta Agron Sin, 2018, 44: 1621-1630. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01621
[30] Ali F, Qanmber G, Li F G, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res, 2022, 35: 199-214.
doi: 10.1016/j.jare.2021.03.011 pmid: 35003801
[31] 张祖建, 谢成林, 谢仁康, 郎有忠, 杨岚, 张菊芳, 朱庆森. 苏中地区直播水稻的群体生产力及氮肥运筹的效应. 作物学报, 2011, 37: 677-685.
doi: 10.3724/SP.J.1006.2011.00677
Zhang Z J, Xie C L, Xie R K, Lang W Z, Yang L, Zhang J F, Shu Q S. Population production capacity of direct-seeding rice in central Jiangsu region and effects of nitrogen application. Acta Agron Sin, 2011, 37: 677-685. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00677
[32] Chen Y, Li F Q, Wurtzel E T. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol, 2010, 153: 66-79.
doi: 10.1104/pp.110.153916 pmid: 20335404
[33] Liu L H, Ren M M, Peng P, Chun Y, Li L, Zhao J F, Fang J J, Peng L X, Yan J J, Chu J F, Wang Y Q, Yuan S J, Li X Y. MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice. J Genet Genomics, 2021, 48: 88-91.
doi: 10.1016/j.jgg.2020.11.008 pmid: 33658152
[34] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C Z, Ma Y, Zhang Q R, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4: 1566.
doi: 10.1038/ncomms2542
[35] Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649-658.
doi: 10.1007/s00425-009-0975-6
[36] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416-1424.
doi: 10.1093/pcp/pcp091 pmid: 19542179
[37] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12: 1090-1102.
doi: 10.1016/j.molp.2019.04.008
[38] Moon S, Jung K H, Lee D E, Lee D Y, Lee J, An K, Kang H G, An G. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147-152.
[39] 张双双, 王立伟, 姚楠, 郭光艳, 夏玉凤, 秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能. 作物学报, 2019, 45: 1327-1337.
doi: 10.3724/SP.J.1006.2019.82069
Zhang S S, Wang L W, Yao N, Guo G Y, Xia Y F, Bei C L. Expression of OsUBA and its function in promoting seed germination and flowering. Acta Agron Sin, 2019, 45: 1327-1337. (in Chinese with English abstract)
[40] Bunsick M, Toh S, Wong C, Xu Z, Ly G, McErlean C S P, Pescetto G, Nemrish K E, Sung P, Li J D, Scholes J D, Lumba S.SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. Nat Plants, 2020, 6: 646-652.
doi: 10.1038/s41477-020-0653-z
[41] Zhu G H, Ye N H, Zhang J H. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol, 2009, 50: 644-651.
doi: 10.1093/pcp/pcp022 pmid: 19208695
[42] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
doi: 10.3724/SP.J.1006.2014.01141
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01141
[43] Hwang S G, Chen H C, Huang W Y, Chu Y C, Shi C T, Cheng W H. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12-22.
doi: 10.1016/j.plantsci.2009.09.014
[44] Li Q H, Yu X T, Chen L, Zhao G, Li S Z, Zhou H, Dai Y, Sun N, Xie Y F, Gao J S, Li D H, Sun X, Guo N. Genome-wide identification and expression analysis of the NCED family in cotton (Gossypium hirsutum L.). PLoS One, 2021, 16: e0246021.
doi: 10.1371/journal.pone.0246021
[45] 刘杨, 王强盛, 丁艳锋, 刘正辉, 李刚华, 王绍华. 水稻休眠分蘖芽萌发过程中内源激素水平的变化. 作物学报, 2009, 35: 356-362.
doi: 10.3724/SP.J.1006.2009.00356
Liu Y, Wang Q S, Ding Y F, Liu Z H, Li G H, Wang S H. Endogenous phytohormone changes in the release of dormant tillering bud in rice. Acta Agron Sin, 2009, 35: 356-362. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00356
[46] Luo L, Takahashi M, Kameoka H, Qin R Y, Shiga T, Kanno Y, Seo M, Ito M, Xu G H, Kyozuka J. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. Plant J, 2019, 97: 1006-1021.
doi: 10.1111/tpj.14266
[1] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[2] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[3] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[4] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[5] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[6] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[7] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[8] YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723.
[9] JIA Xiao-Xia, QI En-Fang, MA Sheng, HUANG Wei, ZHENG Yong-Wei, BAI Yong-Jie, WEN Guo-Hong. Genome-wide identification and expression analysis of potato PYL gene family [J]. Acta Agronomica Sinica, 2022, 48(10): 2533-2545.
[10] LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107.
[11] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[12] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[13] ZHANG Shuang-Shuang,WANG Li-Wei,YAO Nan,GUO Guang-Yan,XIA Yu-Feng,BI Cai-Li. Expression of OsUBA and its function in promoting seed germination and flowering [J]. Acta Agronomica Sinica, 2019, 45(9): 1327-1337.
[14] SONG Song-Quan,LIU Jun,XU Heng-Heng,ZHANG Qi,HUANG Hui,WU Xian-Jin. Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy [J]. Acta Agronomica Sinica, 2019, 45(7): 969-981.
[15] Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG. Identification and mapping of round seed related gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .