Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2498-2504.doi: 10.3724/SP.J.1006.2023.24241

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut

HU Mei-Ling1(), ZHI Chen-Yang1, XUE Xiao-Meng1, WU Jie1, WANG Jin2, YAN Li-Ying1, WANG Xin1, CHEN Yu-Ning1, KANG Yan-Ping1, WANG Zhi-Hui1, HUAI Dong-Xin1,*(), JIANG Hui-Fang1, LEI Yong1,*(), LIAO Bo-Shou1   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China
  • Received:2022-10-28 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-09
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000901);Key Area Research and Development Program of Hebei Province(21326316D);Key Area Research and Development Program of Hubei Province(2021BBA077);Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013-OCRI)

Abstract:

Sucrose content is an important factor to determine the taste and flavor of peanuts. Breeding sweet peanut varieties with high sucrose content has been a main objective for the edible peanut genetic improvement. Developing a near-infrared reflectance spectroscopy model for predicting the sucrose content in single peanut kernel will accelerate the process of sweet peanut breeding. In this study, 128 representative materials with abundant genetic diversity were selected, the near-infrared spectral data were collected, and the sucrose content of each seed was determined by high performance liquid chromatography (HPLC) with RID detector. Based on spectral data and chemical value of sucrose content, a calibration model for predicting the sucrose content in single seed with a coefficient of determination (R2) of 0.913 and a root mean square error of cross validation (RMSECV) of 0.750, was built up by partial least squares (PLS) method. 50 peanut seeds were analyzed by both NIR and HPLC for external validation and the correlation coefficient between the prediction value and the chemical value reached 0.92, indicating that this model could predict sucrose content with adequate accuracy and reliability. This calibration model for sucrose content in single seed could be applied to the selection of high sucrose lines in the early generations of hybrid progenies and in the purity monitoring of seed and raw material, which will be a supportive technique for the edible peanut variety breeding and industrial application.

Key words: peanut, single seed, sucrose content, Near Infrared Spectroscopy (NIRS), calibration model

Fig. 1

Near infrared reflectance spectroscopy Unity-Spectrastar XL and scanning adaptor used in this experiment"

Fig. 2

NIR spectrums of peanut single seeds samples"

Fig. 3

Distribution of sucrose content in all samples detected by HPLC-RID"

Fig. 4

Determination coefficient of prediction of sucrose content in single intact peanut seed by ear-infrared reflectance (NIR) spectroscopy"

Fig. 5

Correlation between NIR and chemical value of sucrose content of single peanut seed used for external verification NIR: sucrose content of single seed detected by NIR; HPLC: sucrose content of single seed detected by HPLC-RID."

Table S1

Results from HPLC and NIR of sucrose content in single peanut seed"

样品编号
Sample ID
近红外值
NIR (%)
液相色谱值
HPLC (%)
偏差
Deviation
样品编号
Sample ID
近红外值
NIR (%)
液相色谱值
HPLC (%)
偏差
Deviation
1 3.95 4.69 -0.74 26 5.55 7.24 -1.69
2 2.79 2.39 0.40 27 6.43 7.15 -0.72
3 4.64 3.30 1.34 28 5.61 6.17 -0.56
4 3.02 4.13 -1.11 29 6.60 8.49 -1.89
5 4.69 3.02 1.67 30 5.92 7.95 -2.03
6 4.74 4.79 -0.05 31 7.36 8.70 -1.34
7 3.67 2.61 1.06 32 6.13 6.86 -0.73
8 2.80 1.98 0.82 33 5.86 8.58 -2.72
9 3.97 2.41 1.56 34 6.54 8.58 -2.04
10 3.76 2.24 1.52 35 6.71 8.01 -1.30
11 6.80 9.17 -2.37 36 2.68 2.38 0.30
12 5.58 6.22 -0.64 37 2.45 2.87 -0.42
13 6.00 7.95 -1.95 38 5.83 7.41 -1.58
14 6.56 7.92 -1.36 39 6.63 8.54 -1.91
15 6.21 7.88 -1.67 40 6.26 7.32 -1.06
16 6.48 8.71 -2.23 41 6.67 8.48 -1.81
17 6.77 8.99 -2.22 42 6.34 8.01 -1.67
18 6.71 9.14 -2.43 43 8.16 10.34 -2.18
19 5.65 8.45 -2.80 44 7.38 8.05 -0.67
20 6.53 9.05 -2.52 45 3.49 5.15 -1.66
21 6.53 9.40 -2.87 46 2.69 3.28 -0.59
22 5.61 8.64 -3.03 47 2.04 3.21 -1.17
23 5.41 7.93 -2.52 48 2.59 3.26 -0.67
24 4.56 5.60 -1.04 49 1.87 1.80 0.07
25 5.74 6.62 -0.88 50 2.12 2.39 -0.27
[1] Toomer O T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit Rev Food Sci, 2017, 58: 3042-3053.
doi: 10.1080/10408398.2017.1339015
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
[3] Birthal P S, Rao P P, Nigam S N, Bantilan M C S, Bhagavatula S. Groundnut and Soybean Economies in Asia: Facts, Trends and Outlook. India: International Crops Research Institute for the Semi-Arid Tropics, 2010. pp 23-26.
[4] 王传堂, 王秀贞, 吴琪, 王志伟, 唐月异, 杜祖波, 刘峰, 李秋. 鲜食花生感官品质主导分析、优异品系筛选与遗传力估算. 花生学报, 2018, 47(4): 71-74.
Wang C T, Wang X Z, Wu Q, Wang Z W, Tang Y Y, Du Z B, Liu F, Li Q. Sensory quality of fresh green peanuts: dominance analysis, selection of elite lines and heritability estimates. J Peanut Sci, 2018, 47(4): 71-74. (in Chinese with English abstract)
[5] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666-671.
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016, 38: 666-671. (in Chinese with English abstract)
[6] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷峰, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47: 368-375.
doi: 10.3724/SP.J.1006.2021.04110
Li W T, Guo J B, Yu B L, Xu S L, Chen H W, Wu B, Gong T F, Huang L, Luo H Y, Chen Y N, Zhou X J, Liu N, Chen W G, Jiang H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agron Sin, 2021, 47: 368-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04110
[7] 张琨, 周芹. 甜菜中糖类的测定方法及应用. 中国糖料, 2018, 40(6): 73-76.
Zhang K, Zhou Q. Research progress on determination and utilization of carbohydrate in beet. Sugar Crop China, 2018, 40(6): 73-76. (in Chinese with English abstract)
[8] 蒋祎丽, 吴晓宗, 郝莉花, 张丽华, 胡颖喆, 纵伟. 近红外光谱技术快速检测猪肉糜中的掺杂鸭肉. 食品研究与开发, 2015, 36(21): 133-135.
Jiang Y L, Wu X Z, Hao L H, Zhang L H, Hu Y Z, Zong W. Rapidly qualitative discrimination of minced duck in ground pork by near infrared reflectance spectroscopy. Food Res Develop, 2015, 36(21): 133-135. (in Chinese with English abstract)
[9] 刘佳, 李月, 高婷, 王佳雅, 胡晓雨, 孙志文, 叶能胜, 李建. 近红外光谱技术在兽药及兽药残留检测方面的应用进展. 中国兽药杂志, 2021, 55(7): 48-58.
Liu J, Li Y, Gao T, Wang J Y, Hu X Y, Sun Z W, Ye N S, Li J. Advance on application of near infrared spectroscopy in the detection of veterinary drug and veterinary drug residue. Chin J Veter Drug, 2021, 55(7): 48-58. (in Chinese with English abstract)
[10] 刘鹏, 蒋雪松, 沈飞, 吴启芳, 许林云, 周宏平. 近红外光谱技术的花生产毒霉菌侵染快速检测. 光谱学与光谱分析, 2017, 37: 1397-1402.
Liu P, Jiang X S, Shen F, Wu Q F, Xu L Y, Zhou H P. Rapid detection of toxigenic fungal contamination in peanuts with near infrared spectroscopy technology. Spectrosc Spectral Anal, 2017, 37: 1397-1402. (in Chinese with English abstract)
[11] 穆同娜, 庄胜利, 赵玉琪, 吴燕涛, 于晓瑾, 孙婷. 近红外光谱法快速检测婴儿配方奶粉中的脂肪酸含量. 现代食品科技, 2015, 31(4): 277-281.
Mu T N, Zhuang S L, Zhao Y Q, Wu Y T, Yu X J, Sun T. Rapid Determination of total fatty acids, saturated fatty acids, and unsaturated fatty acids in infant formula using near-infrared spectroscopy. Modern Food Sci Technol, 2015, 31(4): 277-281. (in Chinese with English abstract)
[12] 王红珂, 张言, 钱诚, 薛莉, 刘玉冰, 李韪韬. 基于近红外光的腹部出血检测系统的开发. 生物医学工程研究, 2016, 35(3): 178-182.
Wang H K, Zhang Y, Qian C, Xue L, Liu Y B, Li W T. Development of an abdominal bleeding detecting system based on near infrared light. J Biomed Eng Res, 2016, 35(3): 178-182. (in Chinese with English abstract)
[13] 吴阮琦, 董艳虹, 范琦, 陈杨, 王以武, 李娟. NIRS法分析复方磺胺甲噁唑片的均匀性. 药物分析杂志, 2014, 34: 291-296.
Wu R Q, Dong Y H, Fan Q, Chen Y, Wang Y W, Li J. Analysis of uniformities of compound sulfamethoxazole tablets by NIRS. Chin J Pharm Anal, 2014, 34: 291-296. (in Chinese with English abstract)
[14] 吴双, 王杰, 俞雅茹, 涂斌, 郑晓, 何东平. 基于拉曼和近红外光谱特征层融合的食用油MUFA和PUFA含量检测. 中国粮油学报, 2017, 32(11): 158-164.
Wu S, Wang J, Yu Y R, Tu B, Zheng X, He D P. Content detection of MUFA and PUFA integrated based on characteristic fusion of raman and near infrared spectrum. J Chin Cereals Oils Assoc, 2017, 32(11): 158-164. (in Chinese with English abstract)
[15] 肖莹, 彭凤, 杨洪芹, 熊歆诺, 李晖. 近红外光谱法在琥乙红霉素片定量分析中的应用. 化学研究与应用, 2016, 28: 954-959.
Xiao Y, Peng F, Yang H Q, Xiong X N, Li H. Application of near infrared spectroscopy in quantitative analysis of erythromycin ethylsuccinate tablets with different manufactures. Chem Reser Appl, 2016, 28: 954-959. (in Chinese with English abstract)
[16] 许倩, 朱秋劲, 叶春, 王文秀. 近红外光谱分析技术快速检测冰温贮藏牛肉品质. 肉类研究, 2015, 29(3): 23-26.
Xu Q, Zhu Q J, Ye C, Wang W X. Application of near infrared spectroscopy in rapid evaluation of beef quality in controlled freezing point storage. Meat Res, 2015, 29(3): 23-26. (in Chinese with English abstract)
[17] 张森, 张双虹, 赵金力, 李绪国, 吴子毅, 王宝, 赵抒娜. 近红外光谱技术在糖业的应用及进展. 食品安全质量检测学报, 2020, 11: 7196-7202.
Zhang S, Zhang S H, Zhao J L, Li X G, Wu Z Y, Wang B, Zhao S N. Application and progress of near infrared reflectance spectroscopy in sugar industry. J Food Safe Qual, 2020, 11: 7196-7202. (in Chinese with English abstract)
[18] 章海亮, 何勇. 便携式短波近红外光谱仪器检测土壤总氮含量研究. 光谱学与光谱分析, 2016, 36(1): 91-95.
Zhang H L, He Y. Measurement of soil total n based on portable short wave NIR spectroscopy technology. Spectrosc Spectral Anal, 2016, 36(1): 91-95. (in Chinese with English abstract)
[19] 丛媛媛, 刘浩, 衣志刚, 王博, 刘念析, 陈亮. 基于混合样品集的大豆种子蔗糖含量近红外光谱定标模型建立. 大豆科学, 2020, 39: 940-946.
Cong Y Y, Liu H, Yi Z G, Wang B, Liu N X, Chen L. Establishment of NIRS calibration models for sucrose content in soybean based on the combined sample Set. Soybean Sci, 2020, 39: 940-946. (in Chinese with English abstract)
[20] 韩洁楠, 王美娟, 赵训超, 鲁鑫, 周志强, 李明顺, 张德贵, 郝转芳, 翁建峰, 雍洪军, 李新海. 玉米粉淀粉含量近红外模型建立与优化. 玉米科学, 2020, 28(6): 81-87.
Han J N, Wang M J, Zhao X C, Lu X, Zhou Z Q, Li M S, Zhang G D, Hao Z F, Wong J F, Yong H J, Li X H. Establishment and optimization of a near-infrared model of maize starch content. J Maize Sci, 2020, 28(6): 81-87. (in Chinese with English abstract)
[21] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47: 332-341.
doi: 10.3724/SP.J.1006.2021.04106
Lei Y, Wang Z H, Huai D X, Gao H Y, Yan L Y, Li J G, Li W T, Chen Y N, Kang Y P, Liu H L, Wang X, Xue X M, Jiang H F, Liao B S. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed. Acta Agron Sin, 2021, 47: 332-341 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04106
[22] 卞能飞, 童飞, 巩佳莉, 孙东雷, 沈一, 王幸, 邢兴华, 王晓军. 花生籽仁中蔗糖含量近红外预测群体模型的建立及在突变体筛选中的应用. 核农学报, 2022, 36: 251-258.
doi: 10.11869/j.issn.100-8551.2022.02.0251
Bian N F, Tong F, Gong J L, Sun D L, Shen Y, Wang X, Xing X H, Wang X J. Establishment of near infrared spectroscopy model for predicting sucrose content of peanut seed and application in mutants selection. J Nucl Agric Sci, 2022, 36: 251-258. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2022.02.0251
[23] 唐月异, 王秀贞, 刘婷, 吴琪, 孙全喜, 王志伟, 张欣, 王传堂, 邵俊飞. 花生自然风干种子蔗糖含量近红外定量分析模型构建. 山东农业科学, 2018, 50(6): 159-162.
Tang Y Y, Wang X Z, Liu T, Wu Q, Sun Q X, Wang Z W, Zhang X, Wang C T, Shao J F. A near infrared spectroscopy model for predicting sucrose content of sun dried peanut seeds. Shandong Agric Sci, 2018, 50(6): 159-162 (in Chinese with English abstract).
[24] 张建成, 王传堂, 王秀贞, 唐月异, 张树伟, 李贵杰. 花生自然风干种子油酸、亚油酸和棕榈酸含量的近红外分析模型构建. 中国农学通报, 2011, 27(3): 90-93.
Zhang J C, Wang C T, Wang X Z, Tang Y Y, Zhang S W, Li G J. NIRS calibration models predictive of oleic, linoleic and palmitic acid content in sun-dried bulk peanut seed samples. Chin Agric Sci Bull, 2011, 27(3): 90-93. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2010-2237
[25] 李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019, 45: 1891-1898.
doi: 10.3724/SP.J.1006.2019.94016
Li J G, Xue X M, Zhang Z H, Wang Z H, Yan L Y, Chen Y N, Wan L Y, Kang Y P, Huai D X, Jiang H F, Liao B S. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agron Sin, 2019, 45: 1891-1898. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.94016
[1] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[2] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[3] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[4] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[5] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[6] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[7] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[8] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[9] GUO Jian-Bin, CHENG Liang-Qiang, LI Wei-Tao, LIU Nian, LUO Huai-Yong, DING Ying-Bin, YU Bo-Lun, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut [J]. Acta Agronomica Sinica, 2023, 49(10): 2698-2704.
[10] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[11] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[12] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[13] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[14] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[15] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[3] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[4] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[5] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[6] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[7] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[8] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[9] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[10] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .