Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 734-746.doi: 10.3724/SP.J.1006.2024.32021

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of salinity stress on grain-filling characteristics and yield of rice

WEI Huan-He1(), ZHANG Xiang1, ZHU Wang2, GENG Xiao-Yu1, MA Wei-Yi1, ZUO Bo-Yuan1, MENG Tian-Yao2, GAO Ping-Lei1, CHEN Ying-Long1, XU Ke1, DAI Qi-Gen1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu / Co-Innovation Center for Modern Production Technology of Grain Crops / Research Institute of Rice Industrial Engineering Technology / Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China / East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Joint International Research Laboratory of Agri-culture and Agro-product Safety, Ministry of Education / Institute of Agricultural Science and Technological Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-05-23 Accepted:2023-09-13 Online:2024-03-12 Published:2023-10-07
  • Contact: *E-mail: qgdai@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFE0113400);National Key Research and Development Program of China(2022YFD1500402);National Natural Science Foundation of China(32001466);Jiangsu Agricultural Science and Technology Innovation Fund(CX(23)1020);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJA210004);China Postdoctoral Science Foundation(2020M671628);Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology(BE2022304);Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology(BE2022305);Priority Academic Program Development PAPD of Jiangsu Higher Education Institutions

Abstract:

To investigate the effect of salinity stress on grain-filling and yield of rice, the conventional japonica rice Nanjing 9108 and Huaidao 5 which were widely planted in saline alkali soil of Jiangsu province were used as the experimental materials. The treatments including the control (CK, 0 salt concentration), medium-salinity (medium-salinity, MS, 0.15% salt concentration), and high salt (high salinity, 0.3% salt concentration) were set. The results showed that, compared with the CK: (1) MS and HS both significantly reduced rice grain yield by 26.3% and 57.7% (average of the two cultivars), respectively. The number of panicles, spikelets per panicle, filled-grain percentage, and 1000-grain weight were all significantly decreased under salinity stress. (2) Salinity stress significantly reduced rice panicle length, the number of superior and inferior grains per panicle, filled-grain percentage, and 1000-grain weight. The decreases in filled-grain percentage and 1000-grain weight of superior grains per panicle under salinity stress were lower than those of inferior grains. (3) Salinity stress significantly reduced the dry matter weight of plants at heading and maturity stages, and the dry matter accumulation from heading to maturity, while increased the harvest index. The net photosynthetic rate and SPAD value at 15 and 30 days after heading of rice leaves under salinity stress were significantly lower than CK. (4) Salinity stress reduced the maximum and mean grain-filling rates of grains during grain-filling period, while the time to achieve the maximum grain-filling rate and effective grain-filling duration of grains increased. Salinity stress increased the days at the first, middle, and late stages during grain-filling period for superior and inferior grains, while the mean grain-filling rate and grain filling amount significantly decreased at the first, middle, and late stages during grain-filling period. The decrease in grain filling amount of superior grains at the first, middle, and late stages during grain-filling period was lower than that of inferior grains. (5) Salinity stress significantly decreased activities of ADP-glucose pyrophosphorylase (AGPase), starch synthases (SSS), granule-bound starch synthase (GBSS), and starch branching enzymes (SBE), and the decrease was greater in inferior grains than superior grains. In conclusion, the grain-filling days for superior and inferior grains increased under salinity stress, but the decrease in grain filling rate and activities of key enzymes involved in starch synthesis was greater, resulting in a significant deterioration in grain filling traits and a significant decrease in grain weight and yield. The inhibitory effects of salinity stress on grain-filling rate and grain filling amount of inferior grains were higher than those of superior grains.

Key words: salinity stress, rice, grain-filling, grain yield

Table 1

Effects of salinity stress on rice grain yield and its components"

年份
Year
品种
Cultivar
处理
Treatment
穗数
Number of
panicles
(×104 hm-2)
每穗粒数
Spikelets per
panicle
结实率
Percentage
of filled
grains (%)
千粒重
1000-grain weight (g)
实产
Actual yield
(t hm-2)
抽穗期至成熟期天数
Duration from heading to maturity (d)
2021 南粳9108
Nanjing 9108
对照 CK 347 a 139.1 a 88.9 a 24.3 a 9.69 a 54
中盐 MS 327 b 120.4 b 86.2 b 23.6 ab 7.38 b 53
高盐 HS 271 c 87.6 c 83.1 c 21.6 b 4.02 c 52
淮稻5号
Huaidao 5
对照 CK 371 a 126.2 a 89.7 a 25.4 a 9.48 a 55
中盐 MS 355 b 100.7 b 88.1 ab 24.8 ab 7.19 b 53
高盐 HS 288 c 82.8 c 82.7 b 22.7 b 4.10 c 51
2022 南粳9108
Nanjing 9108
对照 CK 357 a 133.7 a 89.9 a 24.7 a 9.95 a 55
中盐 MS 317 b 114.4 b 87.4 b 23.2 b 7.10 b 54
高盐 HS 287 c 97.0 c 82.3 c 22.0 c 4.34 c 52
淮稻5号
Huaidao 5
对照 CK 365 a 122.0 a 90.7 a 25.8 a 9.66 a 54
中盐 MS 347 ab 106.3 b 87.1 b 24.2 b 6.97 b 53
高盐 HS 304 b 74.4 c 83.5 c 23.1 c 3.97 c 52
显著性分析 P-value
年份 Year (Y) NS NS NS NS NS
品种 Cultivar (C) * * NS ** **
处理 Treatment (T) ** ** ** ** **
年份品种 Y × C NS NS NS NS NS
年份处理 Y × T NS NS NS NS NS
品种处理 C × T * NS NS * **
年份品种处理 Y × C × T NS NS NS NS NS

Table 2

Effects of salinity stress on rice panicle traits"

品种
Cultivar
处理
Treatment
穗长
Panicle length (cm)
强势粒 Superior grains 弱势粒 Inferior grains
籽粒数
Number of
grains
结实率
Percentage of filled
grains (%)
千粒重
1000-grain
weight (g)
籽粒数
Number of grains
结实率
Percentage of filled grains (%)
千粒重
1000-grain
weight (g)
南粳9108
Nanjing 9108
对照 CK 13.6 a 15.1 a 93.7 a 26.4 a 29.0 a 84.5 a 22.9 a
中盐 MS 12.3 b 12.5 b 90.8 b 25.0 b 24.6 b 81.7 b 21.1 b
高盐 HS 11.9 b 11.5 c 87.3 c 23.9 c 16.7 c 77.9 c 20.1 c
淮稻5号
Huaidao 5
对照 CK 12.9 a 14.2 a 94.2 a 27.8 a 26.5 a 83.8 a 23.8 a
中盐 MS 11.7 b 11.6 b 92.1 ab 26.5 b 20.9 b 81.3 ab 22.2 b
高盐 HS 11.3 b 10.9 c 88.5 b 24.9 c 13.7 c 76.7 b 20.5 c

Table 3

Effects of salinity stress on dry matter weight and harvest index of rice"

品种
Cultivar
处理
Treatment
干物重 Dry matter weight (t hm-2) 干物重积累量 Dry matter accumulation (t hm-2) 收获指数
Harvest index
拔节期 抽穗期 成熟期 拔节期-抽穗期 抽穗期-成熟期
Jointing Heading Maturity Jointing to heading Heading to maturity
南粳9108 对照 CK 4.7 a 10.8 a 17.1 a 6.05 a 6.37 a 0.495 c
Nanjing 9108 中盐 MS 3.2 b 7.9 b 12.0 b 4.65 b 4.19 b 0.517 b
高盐 HS 2.4 c 4.6 c 6.8 c 2.17 c 2.23 c 0.534 a
淮稻5号 对照 CK 4.5 a 10.5 a 16.6 a 5.95 a 6.19 a 0.499 c
Huaidao 5 中盐 MS 3.3 b 7.7 b 11.8 b 4.39 b 4.10 b 0.521 b
高盐 HS 2.1 c 4.3 c 6.4 c 2.20 c 2.10 c 0.541 a

Table 4

Effects of salinity stress on leaf photosynthetic rate and SPAD values of rice after heading"

品种
Cultivar
处理
Treatment
净光合速率Leaf net photosynthetic rate (µmol m-2 s-1) 相对叶绿素含量SPAD values
抽穗后15 d
15 days after heading
抽穗后30 d
30 days after heading
抽穗后15 d
15 days after heading
抽穗后30 d
30 days after heading
南粳9108
Nanjing 9108
对照 CK 23.4 a 17.7 a 44.2 a 36.5 a
中盐 MS 21.8 ab 16.6 b 41.6 b 33.4 b
高盐 HS 19.2 b 14.2 c 35.6 c 28.6 c
淮稻5号
Huaidao 5
对照 CK 22.8 a 16.8 a 43.6 a 35.1 a
中盐 MS 21.1 b 15.7 b 40.5 b 32.4 b
高盐 HS 18.7 c 13.4 c 34.5 c 26.7 c

Fig. 1

Dynamics in increase in grains weight of rice under salinity stress CK: check; MS: medium-salinity stress; HS: high-salinity stress. SG: superior grains; IG: inferior grains."

Table 5

Stimulation equations of grain-filling process of rice under salinity stress"

品种
Cultivar
处理
Treatment
粒位
Grain position
方程参数 Parameter 方程拟合
Simulated equation
A B K N
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 21.97 7222.25 0.4987 4.5520 $Y=21.97{{\left( 1+7222.25{{\text{e}}^{-0.4987X}} \right)}^{-\ \frac{1}{4.5520}}}$ R2=0.976
弱势粒 IG 18.47 10,231.27 0.2951 3.7955 $Y=18.47{{\left( 1+10231.27{{\text{e}}^{-0.2951X}} \right)}^{-\ \frac{1}{3.7955}}}$ R2=0.985
中盐 MS 强势粒 SG 20.86 4853.81 0.4083 3.5638 $Y=20.86{{\left( 1+4853.81{{\text{e}}^{-0.4083X}} \right)}^{-\ \frac{1}{3.5638}}}$ R2=0.985
弱势粒 IG 17.42 8217.82 0.2699 3.3456 $Y=17.42{{\left( 1+8217.82{{\text{e}}^{-0.2699X}} \right)}^{-\ \frac{1}{3.3456}}}$ R2=0.987
高盐 HS 强势粒 SG 19.70 4417.23 0.3846 3.1275 $Y=19.70{{\left( 1+4417.23{{\text{e}}^{-0.3846X}} \right)}^{-\ \frac{1}{3.1275}}}$ R2=0.988
弱势粒 IG 16.53 11,967.81 0.2696 3.2366 $Y=16.53{{\left( 1+11967.81{{\text{e}}^{-0.2696X}} \right)}^{-\ \frac{1}{3.2366}}}$ R2=0.986
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 23.01 7682.64 0.4864 4.5317 $Y=23.01{{\left( 1+7682.64{{\text{e}}^{-0.4864X}} \right)}^{-\ \frac{1}{4.5317}}}$ R2=0.988
弱势粒 IG 19.24 11,824.47 0.2907 3.9182 $Y=19.24{{\left( 1+11824.47{{\text{e}}^{-0.2907X}} \right)}^{-\ \frac{1}{3.9182}}}$ R2=0.978
中盐 MS 强势粒 SG 21.65 4853.82 0.4021 3.4138 $Y=21.65{{\left( 1+4853.82{{\text{e}}^{-0.4021X}} \right)}^{-\ \frac{1}{3.4138}}}$ R2=0.983
弱势粒 IG 18.44 11,416.20 0.2736 3.6728 $Y=18.44{{\left( 1+11416.20{{\text{e}}^{-0.2736X}} \right)}^{-\ \frac{1}{3.6728}}}$ R2=0.989
高盐 HS 强势粒 SG 20.22 4417.29 0.3847 3.1275 $Y=20.22{{\left( 1+4417.29{{\text{e}}^{-0.3847X}} \right)}^{-\ \frac{1}{3.1275}}}$ R2=0.990
弱势粒 IG 16.71 11,967.81 0.2662 3.2366 $Y=16.71{{\left( 1+11967.81{{\text{e}}^{-0.2662X}} \right)}^{-\ \frac{1}{3.2366}}}$ R2=0.986

Fig. 2

Dynamics in grain-filling rate of rice under salinity stress CK: check; MS: medium-salinity stress; HS: high-salinity stress. SG: superior grains; IG: inferior grains."

Table 6

Grain-filling parameters of rice under salinity stress"

品种
Cultivar
处理
Treatment
粒位
Grain position
籽粒灌浆特征参数 Grain-filling parameters
最大灌浆速率
Maximum grain-filling rate
(mg grain-1 d-1)
平均灌浆速率
Mean grain-filling rate (mg grain-1 d-1)
达最大灌浆速率的时间
The time to achieve the maximum
grain-filling rate (d)
有效灌浆时间
Effective
grain-filling
days (d)
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 1.35 0.84 14.8 24.0
弱势粒 IG 0.75 0.47 26.8 42.3
中盐 MS 强势粒 SG 1.22 0.77 17.7 28.9
弱势粒 IG 0.70 0.44 28.9 45.9
高盐 HS 强势粒 SG 1.17 0.74 18.9 30.8
弱势粒 IG 0.67 0.43 30.5 47.5
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 1.39 0.86 15.3 24.7
弱势粒 IG 0.76 0.47 27.6 43.3
中盐 MS 强势粒 SG 1.28 0.80 18.1 29.4
弱势粒 IG 0.71 0.44 29.4 46.1
高盐 HS 强势粒 SG 1.20 0.76 18.9 30.8
弱势粒 IG 0.67 0.42 30.9 48.1

Table 7

Grain-filling characteristics of early, middle, and late stages of rice under salinity stress"

品种
Cultivar
处理
Treatment
粒位
Grain
position
前期 Early stage 中期 Middle stage 后期 Late stage
天数
Days
(d)
平均灌浆速率MGR
(mg grain-1 d-1)
灌浆量
GFA (mg)
天数
Days
(d)
平均灌浆速率
MGR
(mg grain-1 d-1)
灌浆量
GFA (mg)
天数
Days
(d)
平均灌浆速率
MGR
(mg grain-1 d-1)
灌浆量
GFA (mg)
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 10.8 0.94 152.1 8.0 1.21 146.5 5.2 0.38 29.8
弱势粒 IG 20.4 0.38 226.5 12.8 0.67 249.0 9.1 0.21 54.8
中盐 MS 强势粒 SG 13.1 0.65 107.1 9.1 1.08 123.2 6.7 0.33 27.8
弱势粒 IG 22.2 0.31 170.9 13.5 0.62 205.8 10.2 0.19 47.7
高盐 HS 强势粒 SG 14.2 0.53 87.4 9.3 1.04 110.5 7.3 0.31 26.3
弱势粒 IG 23.8 0.27 108.3 13.4 0.60 133.6 10.3 0.18 31.4
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 11.2 0.94 149.6 8.2 1.24 144.5 5.3 0.39 29.4
弱势粒 IG 21.0 0.39 218.8 13.2 0.67 235.0 9.2 0.21 51.0
中盐 MS 强势粒 SG 13.5 0.65 101.1 9.1 1.13 120.0 6.8 0.35 27.6
弱势粒 IG 22.5 0.34 160.5 13.7 0.63 180.7 9.9 0.19 40.3
高盐 HS 强势粒 SG 14.2 0.55 85.0 9.3 1.06 107.5 7.3 0.32 25.6
弱势粒 IG 24.1 0.27 89.8 13.6 0.60 110.8 10.4 0.18 26.0

Table 8

Effects of salinity stress on key enzymes activities involved in starch synthesis of rice grains"

品种
Cultivar
处理
Treatment
粒位
Grain
position
AGPase酶活性
AGPase activity
(mol min-1 mg-1)
GBSS酶活性
GBSS activity
(mol min-1 mg-1)
SSS酶活性
SSS activity
(mol min-1 mg-1)
SBE酶活性
SBE activity
(U g-1)
15 DAH 30 DAH 45 DAH 15 DAH 30 DAH 45 DAH 15 DAH 30 DAH 45 DAH 15 DAH 30 DAH 45 DAH
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 15.8 a 43.8 a 14.1 a 6.4 a 16.8 a 4.5 a 3.7 a 6.1 a 2.7 a 4.2 a 6.8 a 3.2 a
弱势粒 IG 11.8 b 37.4 b 7.6 bc 5.6 b 14.8 b 3.3 b 3.2 b 4.8 b 1.9 b 3.8 b 5.8 b 2.7 b
中盐 MS 强势粒 SG 10.3 c 28.7 c 8.6 b 5.1 c 13.2 c 3.2 b 2.9 b 4.8 b 2.1 b 3.2 c 5.2 c 2.6 b
弱势粒 IG 7.3 d 23.9 d 4.3 d 3.9 d 10.3 d 2.0 cd 2.3 c 3.6 c 1.3 c 2.8 d 4.3 d 2.1 c
高盐 HS 强势粒 SG 6.3 d 23.7 d 6.2 c 3.4 e 10.9 d 2.3 c 1.9 d 3.7 c 1.2 c 1.9 e 3.8 e 1.7 d
弱势粒 IG 4.3 e 19.3 e 3.0 d 2.2 f 8.8 e 1.4 d 1.2 e 2.9 d 0.7 d 1.3 f 2.7 f 1.1 e
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 15.7 a 42.7 a 13.5 a 6.8 a 17.0 a 4.7 a 3.6 a 5.9 a 2.9 a 4.4 a 6.6 a 3.1 a
弱势粒 IG 12.8 b 36.5 b 7.3 b 5.5 b 15.1 b 3.4 bc 3.1 b 5.0 b 1.6 c 3.5 b 5.7 b 2.8 b
中盐 MS 强势粒 SG 10.7 c 29.8 c 7.9 b 5.6 b 13.8 c 3.8 b 2.7 c 4.9 b 2.0 b 3.6 b 5.4 b 2.4 c
弱势粒 IG 8.0 d 24.5 d 3.9 d 4.0 c 11.1 d 2.4 c 2.2 d 3.7 c 1.0 d 2.6 c 4.6 c 1.8 d
高盐 HS 强势粒 SG 6.1 e 23.7 d 6.4 c 3.7 c 10.3 d 2.1 c 2.1 d 3.2 d 1.5 c 1.8 d 4.0 d 1.8 d
弱势粒 IG 4.6 f 18.9 e 3.1 d 2.0 d 7.8 e 1.3 d 1.3 e 2.0 e 0.6 e 1.2 e 2.5 e 1.2 e
[1] Yuan L P. Development of hybrid rice to ensure food security. Rice Sci, 2014, 21: 1-2.
doi: 10.1016/S1672-6308(13)60167-5
[2] Zhang J Z, He C X, Chen L, Cao S X. Improving food security in China by taking advantage of marginal and degraded lands. J Clean Prod, 2018, 171: 1020-1030.
doi: 10.1016/j.jclepro.2017.10.110
[3] Wang J Y, Zhang Z W, Liu Y S. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy, 2018, 74: 204-213.
doi: 10.1016/j.landusepol.2017.11.037
[4] Radanielson A M, Gaydon D S, Khan M M R, Chaki A K, Rahman M A, Angeles O, Li T, Ismail A. Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Res, 2018, 229: 27-36.
doi: 10.1016/j.fcr.2018.08.020
[5] 韦还和, 葛佳琳, 张徐彬, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系. 作物学报, 2020, 46: 1238-1247.
doi: 10.3724/SP.J.1006.2020.02001
Wei H H, Ge J L, Zhang X B, Meng T Y, Lu Y, Li X Y, Tao Y, Ding E H, Chen Y L, Dai Q G. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress. Acta Agron Sin, 2020, 46: 1238-1247 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.02001
[6] 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的相应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105-117.
doi: 10.16819/j.1001-7216.2022.210609
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Rice response to salt stress and research progress in salt tolerance mechanism. Chin J Rice Sci, 2022, 36: 105-117 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210609
[7] Zheng C, Liu C T, Liu L, Tan Y N, Sheng X B, Yu D, Sun Z Z, Sun X W, Chen J, Yuan D Y, Duan M J. Effect of salinity stress on rice yield and grain quality: a meta-analysis. Eur J Agron, 2023, 144: 126765.
doi: 10.1016/j.eja.2023.126765
[8] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[9] 徐云姬, 唐树鹏, 简超群, 蔡文璐, 张伟杨, 王志琴, 杨建昌. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用. 中国水稻科学, 2022, 36: 327-335.
doi: 10.16819/j.1001-7216.2022.211010
Xu Y J, Tang S P, Jian C Q, Cai W L, Zhang W Y, Wang Z Q, Yang J C. Roles of polyamines and ethylene in grain filling, grain weight and quality of rice. Chin J Rice Sci, 2022, 36: 327-335 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.211010
[10] Huang J W, Pan Y P, Chen H F, Zhang Z X, Fang C X, Shao C H, Amjad H, Lin W W, Lin W X. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res, 2020, 258: 107962.
doi: 10.1016/j.fcr.2020.107962
[11] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193 (in Chinese with English abstract).
[12] Lawas L M F, Shi W J, Yoshimoto M, Hasegawa T, Hincha D K, Zuther E, Jagadish S V K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res, 2018, 229: 66-77.
doi: 10.1016/j.fcr.2018.09.009
[13] 左静红. 苏打盐碱胁迫对北方粳稻灌浆特性及穗部性状的影响. 中国科学院大学硕士学位论文, 北京, 2013.
Zuo J H. Effects of Saline-alkaline Stress on the Grain Filling Characteristics and Panicle Traits of Northern Japonica. MS Thesis of Chinese Academy Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[14] 朱宽宇, 展鹏飞, 陈静, 王志琴, 杨建昌, 赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响. 中国水稻科学, 2018, 32: 155-168.
Zhu K Y, Zhan P F, Chen J, Wang Z Q, Yang J C, Zhao B H. Effects of irrigation regimes during grain filling under different nitrogen rates on inferior spikelets grain-filling and grain yield of rice. Chin J Rice Sci, 2018, 32: 155-168 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2018.7060
[15] Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 2016, 132: 28-41.
doi: 10.1016/j.envexpbot.2016.08.006
[16] 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001, 27: 201-206.
Cheng F M, Jiang D A, Wu P, Shi C H. Changes and temperature effects of starch synthase during grain filling in early indica rice. Acta Agron Sin, 2001, 27: 201-206 (in Chinese with English abstract).
[17] 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究. 作物学报, 1997, 23: 338-344.
Li T G, Shen B, Chen N, Luo Y K. Study on the role of Q enzyme in the formation of chalky rice grains. Acta Agron Sin, 1997, 23: 338-344 (in Chinese with English abstract).
[18] Meng T Y, Zhang X B, Ge J L, Chen X, Yang Y L, Zhu G L, Chen Y L, Zhou G S, Wei H H, Dai Q G. Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields. Field Crops Res, 2021, 271: 108255.
doi: 10.1016/j.fcr.2021.108255
[19] Khan I, Muhammad A, Chattha M U, Skalicky M, Chattha M B, Ayub M A, Anwar M R, Soufan W, Hassan M U, Rahman M A, Brestic M, Zivcak M, Sabagh A E. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Front Plant Sci, 2022, 13: 840900.
doi: 10.3389/fpls.2022.840900
[20] 周根友, 翟彩娇, 邓先亮, 张姣, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响. 中国水稻科学, 2018, 32: 146-154.
Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots. Chin J Rice Sci, 2018, 32: 146-154 (in Chinese with English abstract).
[21] Chen T X, Shabala S, Niu Y N, Chen Z H, Shabala L, Meinke H, Venkataraman G, Pareek A, Xu J L, Zhou M X. Molecular mechanisms of salinity tolerance in rice. Crop J, 2021, 9: 506-520.
doi: 10.1016/j.cj.2021.03.005
[22] 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾俊飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制. 中国水稻科学, 2023, 37: 153-165.
doi: 10.16819/j.1001-7216.2023.221005
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms. Chin J Rice Sci, 2023, 37: 153-165 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2023.221005
[23] Radanielson A M, Gaydon D S, Li T, Angeles O, Roth C H. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron, 2018, 100: 44-55.
doi: 10.1016/j.eja.2018.01.015
[24] Huang J, Zhu C Q, Hussain S, Huang J, Liang Q D, Zhu L F, Cao X C, Kong Y L, Li Y F, Wang L P, Li J W, Zhang J H. Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiol Biochem, 2020, 155: 374-383.
doi: 10.1016/j.plaphy.2020.06.013
[25] Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J, 2022, 10: 13-25.
doi: 10.1016/j.cj.2021.02.010
[26] Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiol Plant, 2018, 163: 45-58.
doi: 10.1111/ppl.2018.163.issue-1
[27] Ali S, Gautam R K, Mahajan R, Krishnamurthy S L, Sharma S K, Singh R K, Ismail A M. Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crops Res, 2013, 154: 65-73.
doi: 10.1016/j.fcr.2013.06.011
[28] Joshi R, Sahoo K K, Tripathi A K, Kumar R, Gupta B K, Pareek A, Singla-Pareek S L. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ, 2018, 41: 936-946.
doi: 10.1111/pce.v41.5
[29] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
doi: 10.1016/j.fcr.2016.03.006
[30] 李赞堂, 王市银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制. 作物学报, 2018, 44: 581-590.
doi: 10.3724/SP.J.1006.2018.00581
Li Z T, Wang S Y, Jiang W Y, Zhang S, Zhang S B, Xu J. Physiological mechanisms of promoting source, sink, and grain filling by 24-epibrassinolide (EBR) applied at panicle initiation stage of rice. Acta Agron Sin, 2018, 44: 581-590 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00581
[31] 顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001, 27: 7-14.
Gu S L, Zhu Q S, Yang J C, Peng S B. Analysis on grain filling characteristic for different rice types. Acta Agron Sin, 2001, 27: 7-14 (in Chinese with English abstract).
[32] 陈红阳, 贾琰, 赵宏伟, 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响. 中国水稻科学, 2022, 36: 487-504.
doi: 10.16819/j.1001-7216.2022.211105
Chen H Y, Jia Y, Zhao H W, Qu Z J, Wang X P, Duan Y Y, Yang R, Bai X, Wang C C. Effects of low temperature stress during grain filling on starch formation and accumulation of superior and inferior grains in rice. Chin J Rice Sci, 2022, 36: 487-504 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.211105
[33] 王新鹏. 孕穗期干旱胁迫对寒地粳稻碳代谢及产量形成影响的研究. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2020.
Wang X P. Effects of Drought Stress at Booting Stage on Carbon Metabolism and Yield Formation of Japonica Rice in Cold Region. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020 (in Chinese with English abstract).
[34] 成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33: 57-67.
doi: 10.16819/j.1001-7216.2019.8077
Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108. Chin J Rice Sci, 2019, 33: 57-67 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8077
[35] Zhu G L, Li H T, Shi X X, Wang Y, Zhi W F, Chen X B, Liu J W, Ren Z, Shi Y, Ji Z Y, Jiao X R, Ibrahim M E H, Nimir N E A, Zhou G S. Nitrogen management enhanced plant growth, antioxidant ability, and grain yield of rice under salinity stress. Agron J, 2020, 112: 550-563.
doi: 10.1002/agj2.v112.1
[1] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[2] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[3] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[4] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[5] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[6] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[7] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[8] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[9] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[10] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[11] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[12] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[13] XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571.
[14] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[15] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .