Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 991-1003.doi: 10.3724/SP.J.1006.2024.31041

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration

HUANG Hong-Sheng(), ZHANG Xin-Yue, JU Hui, HAN Xue()   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-06-25 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-16
  • Contact: * E-mail: hanxue@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2019YFA0607403);Special Project of Agricultural Green Low-carbon Science Center of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences, and the Basic Scientific Research Business Expenses of Central-level Public Welfare Research Institutes(CAAS-CSGLCA-202301);Special Project of Agricultural Green Low-carbon Science Center of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences, and the Basic Scientific Research Business Expenses of Central-level Public Welfare Research Institutes(BSRF202202)

Abstract:

The objective of this study is to investigate the effect of elevated atmospheric CO2 concentration on the canopy spectral characteristics of winter wheat during the whole growth period and to establish quantitative relationships between above-ground biomass (AGB) and spectral parameters based on the screened sensitive bands. For this purpose, during the winter wheat growing season of 2021-2022, two treatment levels of atmospheric CO2 concentration (ACO2, (420±20) μL L-1) and elevated CO2 concentration (ECO2, (550±20) μL L-1) were set based on the Free Atmospheric CO2 Enrichment System (Mini-FACE), and the changes of spectral features were analyzed under elevated CO2 concentration. AGB sensitive bands were screened and the estimation models of AGB were constructed based on the successive projections algorithm (SPA), stepwise multiple linear regression (SMLR), and partial least squares regression (PLSR). The results showed that elevated CO2 concentration significantly increased AGB in winter wheat at jointing and anthesis stages. The red-edge reflectance, near red edge reflectance, and red-edge area increased at jointing stage and decreased at anthesis and maturity stages. The positions of the blue-edge, yellow-edge, and red-edge were shifted at different growth stages. The sensitive spectral bands of AGB are mainly distributed in the red-edge and near red-edge bands, and the elevated CO2 concentration narrows the range of the sensitive bands of AGB, but does not affect the estimation of AGB. The SMLR and PLSR models of AGB both achieved high estimation accuracy (R2 > 0.8), where the characteristic parameters such as R799', Dy, SDy, and PRI in the SMLR model were significantly correlated with AGB, with an R2 of 0.866. The PLSR model (R2 > 0.9) outperformed the SMLR model in terms of estimation accuracy and stability. This study can provide the theoretical basis and technical methods for the remote sensing monitoring of winter wheat growth and development under elevated CO2 concentration in the future.

Key words: elevated CO2 concentration, winter wheat, above ground biomass, canopy spectral features, regression analysis

Table 1

Definition and calculation formula of vegetation index"

植被指数
Vegetation index
名称
Name
计算公式
Calculation formula
参考文献
References
ARI-1 花青素反射率指数-1
Anthocyanin reflectance index 1
1/R550-1/R700 [21]
ARI-2 花青素反射率指数-2
Anthocyanin reflectance index 2
R800×(1/R550-1/R700) [22]
ARVI 大气阻抗植被指数
Atmospherically resistant regetation Index
(R810-(2×R680-R480))/(R810+(2×R680-R480)) [23]
EVI 增强植被指数
Enhanced vegetation index
(2.5×(R782-R675))/(R782+6×R675-7.5×R445+1) [24]
mND705 改进红边归一化植被指数
Modified red edge normalized difference vegetation index
(R750-R705)/(R750+R705-2×R445) [25]
NDVI 归一化植被指数
Normalized difference vegetation index
(R750-R550)/(R750+R550) [26]
NDVI705 红边归一化植被指数
Red edge normalized difference vegetation index
(R750-R705)/(R750+R705) [27]
PRI 光化学植被指数
Photochemical reflectance index
(R570-R531)/(R570+R531) [28]
PSRI 植物衰老反射率指数
Plant senescence reflectance index
(R680-R500)/R750 [28]
SR 比值植被指数
Simple ratio index
R985/R745 [28]

Table 2

Definition and description of spectral characteristic parameters"

光谱特征参数
Spectral
characteristics parameters
名称
Name
说明
Illustration
Rx x nm处的冠层光谱反射率。
Canopy spectral reflectance at x nm.
Rx' x nm处的冠层光谱反射率的一阶微分。
First order differentiation of canopy spectral reflectance at x nm.
AR 红边反射率平均值
Average red edge reflectance
冠层光谱680~760 nm波段的平均值。
Mean values of the 680-760 nm band of the canopy spectrum.
Rg 绿峰反射率
Green peak reflectance
冠层光谱510~560 nm波段内最大光谱反射率值。
Maximum spectral reflectance values in the 510-560 nm band of the canopy spectrum.
λg 绿峰位置
Green peak location
冠层光谱510~560 nm波段内最大光谱反射率对应的位置。
Location of maximum spectral reflectance in the 510-560 nm band of the canopy spectrum.
Db 蓝边幅值
Blue edge amplitude
冠层光谱490~530 nm波段内一阶微分的最大值。
Maximum value of the first order differential in the 490-530 nm band of the canopy spectrum.
λb 蓝边位置
Blue edge location
冠层光谱490~530nm波段内一阶微分最大值对应波长的位置。
Location of the first order differential maximum in the 490-530 nm band of the canopy spectrum.
Dy 黄边幅值
Yellow edge amplitude
冠层光谱560~640 nm波段内一阶微分的最大值。
Maximum value of the first-order differential in the 560-640 nm band of the canopy spectrum.
λy 黄边位置
Yellow edge location
冠层光谱560~640 nm波段内一阶微分最大值对应波长的位置。
Location of the first order differential maximum in the 560-640 nm band of the canopy spectrum.
Dr 红边幅值
Red edge amplitude
冠层光谱680~760 nm波段内一阶微分的最大值。
Maximum value of the first order differential in the 680-760 nm band of the canopy spectrum.
λr 红边位置
Red edge location
冠层光谱680~760 nm波段内一阶微分最大值对应波长的位置。
Location of the first order differential maximum in the 680-760 nm band of the canopy spectrum.
SDb 蓝边面积
Blue edge area
蓝边反射率一阶微分曲线围成的面积。
Area enclosed by the first order differential curve of blue edge reflectance.
SDy 黄边面积
Yellow edge area
黄边范围内一阶微分波所包围的面积。
Area enclosed by the first order differential curve of yellow edge reflectance.
SDr 红边面积
Red edge area
红边范围内一阶微分波所包围的面积。
Area enclosed by the first order differential curve of red edge reflectance.
SDr/SDb 红边与蓝边面积的比值。
Ratio of the red edge area to the blue edge area.
SDr/SDy 红边与黄边面积的比值。
Ratio of the red edge area to the yellow edge area.
(SDr-SDb)/ (SDr+SDb) (红边面积-蓝边面积)/(红边面积+蓝边面积)。
(Red edge area-Blue edge area)/(Red edge area + Blue edge area).
(SDr-SDy)/ (SDr+SDy) (红边面积-黄边面积)/(红边面积+黄边面积)。
(Red edge area-Yellow edge area)/(Red edge area+Yellow edge area).

Fig. 1

Effects of different concentrations of CO2 on aboveground biomass of winter wheat ACO2: atmospheric carbon dioxide concentration, ECO2: elevated carbon dioxide concentration. The error line represents the standard deviation. “NS” indicates no significantly different among the treatments in the same stage at P < 0.05. “*”indicates significantly different among the treatments in the same stage at P < 0.05."

Fig. 2

Canopy reflectance of winter wheat during the growth season under different CO2 concentrations"

Table 3

Table of spectral characteristics parameters of winter wheat at different CO2 concentrations"

光谱特征参数
Spectral characteristics parameter
CO2 拔节期
Jointing
开花期
Anthesis
灌浆期
Grain filling
AR ACO2 16.17±2.77 16.25±1.68 16.76±1.66
ECO2 18.05±2.41* 15.53±1.24 17.20±1.85
Rg ACO2 5.62±1.06 3.72±0.30 6.53±1.16
ECO2 6.23±1.11 3.82±0.76 7.09±1.85
λg ACO2 552.92±1.67 552.50±0.52 558.08±2.11
ECO2 550.58±2.40 552.58±0.67 558.58±1.88
Db ACO2 0.10±0.02 0.08±0.01 0.09±0.01
ECO2 0.13±0.05* 0.08±0.01 0.09±0.02
λb ACO2 521.92±0.51 521.42±0.51 519.00±0.60
ECO2 522.33±0.78 523.00±0.74* 520.42±0.51*
Dy ACO2 -0.07±0.01 -0.05±0.01 -0.03±0.02
ECO2 -0.07±0.01 -0.05±0.01 -0.02±0.03
λy ACO2 568.33±0.98 568.83±0.39 592.08±2.92*
ECO2 568.25±1.29 568.58±0.67 581.83±1.80
Dr ACO2 0.69±0.16 0.96±0.11 0.59±0.12*
ECO2 0.76±0.16 0.87±0.09 0.46±0.10
λr ACO2 729.25±0.75 734.92±0.67 727.17±0.94
ECO2 728.67±0.65 736.50±0.67* 729.92±0.79*
SDb ACO2 2.14±0.38 1.55±0.21 2.34±0.38
ECO2 2.43±0.46 1.59±0.31 2.44±0.55
SDy ACO2 1.88±0.40 1.63±0.26 0.97±0.35
ECO2 2.02±0.50 1.61±0.22 1.08±0.41
SDr ACO2 29.10±1.44 39.08±1.67* 24.44±1.79*
ECO2 32.68±1.61* 35.90±1.26 22.59±1.95
SDr/SDb ACO2 13.70±2.72 25.30±2.07 10.67±2.68
ECO2 13.63±2.75 23.34±5.03 9.66±2.83
SDr/SDy ACO2 15.49±1.43 24.11±1.92 26.68±4.75
ECO2 16.55±2.18 22.66±3.49 23.39±8.22

Table 4

Descriptive statistical analysis of partial least squares regression of above-ground biomass of winter wheat"

CO2 训练组 Train group 测试组Test group
NComps CV Adj CV X-Var (%) Y-Var (%) R2 Adj R2 RMSE P
ACO2 6 0.289 0.285 99.09 98.16 0.939 0.933 217.3 <0.01
ECO2 6 0.472 0.466 99.11 98.74 0.894 0.877 115.4 <0.01

Fig. 3

Significant spectral bands of above-ground biomass of winter wheat based on two methods"

Table 5

Descriptive statistical analysis of successive projections algorithm + stepwise multiple linear regression for aboveground biomass of winter wheat"


Group
CO2 样品数
Sample number
敏感光谱波段
Sensitive spectral bands
R2 Adj R2 RMSE Max VIF P
训练组Train ACO2 24 R682, R727, R771, R985, R1078, R1083, R1100 0.967 0.953 175.8 20.755 <0.01
ECO2 24 R678, R711, R757, R972, R1060 0.855 0.815 302.8 12.958 <0.01
测试组
Test
ACO2 12 0.932 0.925 174.0 <0.01
ECO2 12 0.806 0.787 243.3 <0.01

Fig. 4

Correlation coefficients between spectral parameters and above-ground biomass * indicate significant difference at the 0.05 probability level."

Table 6

Stepwise multiple linear regression model for above-ground biomass"

回归方式
Regression method
分组
Groupings
自变量
Independent variable
回归方程
Regression equation
R2 Adj R2 RMSE Max vif P
CR+SMLR 训练组Train 光谱参数
Spectral parameters
y = 387.1+27619.5R799'-7360.8Dy
-302.8SDy-5437PRI
0.866 0.854 287.2 3.65 <0.01
测试组
Test
测量值
Measure
y = 1.0194x-129.81 0.897 0.865 238.6 <0.01
SPA+SMLR 训练组
Train
光谱反射率
Spectral
reflectance
y = 490.48+1258.94R599-1078.41R677
-237.54R736-194.43R781+194.87R1078+146.82R1083
0.841 0.818 320.3 49.29 <0.01
测试组
Test
测量值
Measure
y = 0.873x+245.764 0.838 0.830 285.7 <0.01

Fig. 5

Fitting relationships between the training and test groups of the PLSR model for aboveground biomass of winter wheat a, b: the above-ground biomass partial least squares regression model based on spectral reflectance as the independent variable, with a as the training group and b as the test group; c, d: the above-ground biomass partial least squares regression model based on spectral parameters as the independent variable, with c as the training group and d as the test group; ncomps: the number of components; Y-Var: the cumulative variance explained percentage of dependent variables."

[1] 王卓妮, 袁佳双, 庞博, 黄磊. IPCC AR6《气候变化2022: 减缓气候变化》主要结论和启示. 气候变化研究进展, 2022, 18: 531-537.
Wang Z N, Yuan J S, Pang B, Huang L. The interpretation and highlights of IPCC AR6 WGIII report climate change 2022:mitigation of climate change. Climate Chang Res, 2022, 18: 531-537. (in Chinese with English abstract)
[2] Ainsworth E A, Long S P. What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351-371.
doi: 10.1111/nph.2005.165.issue-2
[3] Sinha P G, Kapoor R, Uprety D C, Bhatnagar A K. Impact of elevated CO2 concentration on ultrastructure of pericarp and composition of grain in three Triticum species of different ploidy levels. Environ Exp Bot, 2009, 66: 451-456.
doi: 10.1016/j.envexpbot.2009.04.006
[4] Li B, Xu X, Zhang L, Han J, Bian C, Li G, Liu J, Jin L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J Photogramm Remote Sens, 2020, 162: 161-172.
doi: 10.1016/j.isprsjprs.2020.02.013
[5] Miller G J, Morris J T, Wang C. Estimating aboveground biomass and its spatial distribution in coastal wetlands utilizing planet multispectral imagery. Remote Sens, 2019, 11: 1-16.
doi: 10.3390/rs11010001
[6] Tian H, Shi S, Wang H, Li F, Li Z, Alva A, Zhang Z. Estimation of sugar beet aboveground biomass by band depth optimization of hyperspectral canopy reflectance. J Indian Soc Remote Sens, 2016, 45: 795-803.
doi: 10.1007/s12524-016-0632-z
[7] Xie Y, Wang C, Yang W, Feng M, Qiao X, Song J. Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury. Sci Rep, 2020, 10: 244-254.
doi: 10.1038/s41598-019-57100-8 pmid: 31937859
[8] Dawson T P, Curran P J. A new technique for interpolating the reflectance red edge position. Int J Remote Sens, 1998, 1: 2133-2139.
[9] 郑红平, 邹红玉. 浅述植被“红边”效应及其定量分析方法. 遥感信息, 2010, 25(4): 112-116.
Zheng H P, Zou H Y. The effect and method of quantitative analysis of “Red Edge” of vegetation. Remote Sens Inf, 2010, 25(4): 112-116. (in Chinese with English abstract)
[10] 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演. 浙江农业学报, 2022, 34: 582-589.
doi: 10.3969/j.issn.1004-1524.2022.03.19
Cai Y, Miao Y X, Wu H, Wang D. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration. Acta Agric Zhejiangensis, 2022, 34: 582-589. (in Chinese with English abstract)
[11] 杨璐璐, 华开, 张学霞. 不同CO2浓度及干旱胁迫下高羊茅的生理响应和光谱特征. 中国草地学报, 2014, 36(4): 72-78.
Yang L L, Hua K, Zhang X X. The impacts of mowing on photosynthesis and water physiological conditions of Ceratoides latens. Chin J Grassland, 2014, 36(4): 72-78. (in Chinese with English abstract)
[12] Sun Q, Gu X, Sun L, Yang G, Zhou L, Guo W. Dynamic change in rice leaf area index and spectral response under flooding stress. Paddy Water Environ, 2020, 18: 223-233.
doi: 10.1007/s10333-019-00776-5
[13] Ren P, Feng M C, Yang W D, Wang C, Liu T T, Wang H Q. Response of winter wheat (Triticum aestivum L.) hyperspectral characteristics to low temperature stress. Spectr Spect Anal, 2014, 34: 2490-2494.
[14] Xu D Q, Liu X L, Wang W, Chen M, Kan H C, Li C F, Zheng S F. Hyper spectral characteristics and estimation model of leaf chlorophyll content in cotton under waterlogging stress. J Appl Ecol, 2017, 28: 3289-3296.
[15] Tschannerl J, Ren J, Yuen P, Sun G, Zhao H, Yang Z, Wang Z, Marshall S. MIMR-DGSA: unsupervised hyperspectral band selection based on information theory and a modified discrete gravitational search algorithm. Inf Fusion, 2019, 51: 189-200.
doi: 10.1016/j.inffus.2019.02.005
[16] Steve D B, Pieter K, Paul S. Walter D. A band selection technique for spectral classification. IEEE Geosci Remote Sens Lett, 2005, 2: 319-323.
doi: 10.1109/LGRS.2005.848511
[17] Gao H Z, Lu Q P, Ding H Q, Peng Z Q. Choice of characteristic near-infrared wavelengths for soil total nitrogen based on successive projection algorithm. Spectr Spect Anal, 2009, 29: 2951-2954.
[18] Liu J, Xie J, Meng T, Dong H. Organic matter estimation of surface soil using successive projection algorithm. Agron J, 2022, 114: 1944-1951.
doi: 10.1002/agj2.v114.4
[19] Xie Y, Feng M, Wang C, Yang W, Sun H, Yang C, Jing B, Qiao X, Saleem K M, Song J. Hyperspectral monitor on chlorophyll density in winter wheat under water stress. Agron J, 2020, 112: 3667-3676.
doi: 10.1002/agj2.v112.5
[20] El-Hendawy S, Al-Suhaibani N, Alotaibi M, Hassan W, Elsayed S, Tahir M U, Mohamed A I, Schmidhalter U. Estimating growth and photosynthetic properties of wheat grown in simulated saline field conditions using hyperspectral reflectance sensing and multivariate analysis. Sci Rep, 2019, 9: 16473.
doi: 10.1038/s41598-019-52802-5 pmid: 31712701
[21] Gitelson A A, Merzlyak M N, Chivkunova O B. Optical properties and non-destructive estimation of anthocyanin content in plant leaves? Photochem Photobiol, 2001, 74: 38-45.
doi: 10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2 pmid: 11460535
[22] Merzlyak M N, Solovchenko A E, Gitelson A A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol Technol, 2003, 27: 197-211.
doi: 10.1016/S0925-5214(02)00066-2
[23] Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens, 1992, 30: 261-270.
doi: 10.1109/36.134076
[24] Huete A R, Liu H Q, Batchily K, van Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ, 1997, 59: 440-451.
doi: 10.1016/S0034-4257(96)00112-5
[25] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354.
doi: 10.1016/S0034-4257(02)00010-X
[26] Gamon J A, Peñuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ, 1992, 41: 35-44.
doi: 10.1016/0034-4257(92)90059-S
[27] Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994, 143: 286-292.
doi: 10.1016/S0176-1617(11)81633-0
[28] Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ, 2005, 95: 177-194.
doi: 10.1016/j.rse.2004.12.016
[29] 张华东, 阮陆宁. 偏最小二乘回归在R软件中的实现及其优缺点剖析. 科技广场, 2015, (11): 12-17.
Zhang H D, Ruan L N. Realization and advantages and disadvantages analysis of partial least-squares regression in the R software. Sci Mos, 2015, (11): 12-17. (in Chinese with English abstract)
[30] 王石言, 王力, 张静, 张林森. 黄土旱塬主要农林用地土壤水文特征对比. 中国水土保持科学, 2016, 14(3): 10-18.
Wang S Y, Wang L, Zhang J, Zhang L S. Comparison of soil hydrological characteristics for main cropland and orchard in dry highland of the Loess Tableland. Sci Soil Water Conserv, 2016, 14(3): 10-18. (in Chinese with English abstract)
[31] Xie Y, Feng M, Wang C, Yang W, Sun H, Yang C, Jing B, Qiao X, Saleem Kubar M, Song J. Hyperspectral monitor on chlorophyll density in winter wheat under water stress. Agron J, 2020, 112: 3667-3676.
doi: 10.1002/agj2.v112.5
[32] Liu J, Xie J, Meng T, Dong H. Organic matter estimation of surface soil using successive projection algorithm. Agron J, 2022, 114: 1944-1951.
doi: 10.1002/agj2.v114.4
[33] Högy P, Kottmann L, Schmid I, Fangmeier A. Heat, wheat and CO2: the relevance of timing and the mode of temperature stress on biomass and yield. J Agron Crop Sci, 2019, 205: 608-615.
doi: 10.1111/jac.v205.6
[34] Högy P, Brunnbauer M, Koehler P, Schwadorf K, Breuer J, Franzaring J, Zhunusbayeva D, Fangmeier A. Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment. Environ Exp Bot, 2013, 88: 11-18.
doi: 10.1016/j.envexpbot.2011.12.007
[35] Liu C, Hu Z H, Islam A, Kong R, Yu L F, Wang Y Y. Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations. Int J Remote Sens, 2021, 42: 1035-1053.
doi: 10.1080/01431161.2020.1823038
[36] 杨熙来, 朱榴骏, 冯兆忠. 臭氧胁迫下冬小麦叶片高光谱特征和叶绿素含量估算. 生态学报, 2023, 43: 3213-3223.
Yang X L, Zhu L J, Feng Z Z. Hyperspectral characteristics and chlorophyll content estimation of winter wheat under ozone stress. Acta Ecol Sin, 2023, 43: 3213-3223. (in Chinese with English abstract)
[37] Bandyopadhyay K K, Pradhan S, Sahoo R N, Singh R, Gupta V K, Joshi D K, Sutradhar A K. Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices. Agric Water Manag, 2014, 146: 115-123.
doi: 10.1016/j.agwat.2014.07.017
[38] Zhang C, Ren H, Dai X, Qin Q, Li J, Zhang T, Sun Y. Spectral characteristics of copper stressed vegetation leaves and further understanding of the copper stress vegetation index. Int J Remote Sens, 2019, 40: 4473-4488.
doi: 10.1080/01431161.2018.1563842
[39] Estrada F, Flexas J, Araus J L, Mora P F, Gonzalez T J, Castillo D, Matus I A, Méndez E A M, Garriga M, Araya R C, Douthe C, Castillo B, Del P A, Lobos G A. Exploring plant responses to abiotic stress by contrasting spectral signature changes. Front Plant Sci, 2023, 13: 1-17.
[40] Ohsowski B M, Dunfield K E, Klironomos J N, Hart M M. Improving plant biomass estimation in the field using partial least squares regression and ridge regression. Botany, 2016, 94: 501-508.
doi: 10.1139/cjb-2016-0009
[41] Xie Y, Feng M, Wang C, Yang W, Sun H, Yang C, Jing B, Qiao X, Saleem K M, Song J. Hyperspectral monitor on chlorophyll density in winter wheat under water stress. Agron J, 2020, 112: 3667-3676.
doi: 10.1002/agj2.v112.5
[1] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[2] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[3] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[4] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[5] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[6] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[7] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[8] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[9] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[10] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[11] ZHOU Qi, LI Lan-Tao, ZHANG Lu-Lu, MIAO Yu-Hong, WANG Yi-Lun. Effects of interaction of nitrogen level and sowing rate on yield, growth, and ecological field characteristics of winter wheat [J]. Acta Agronomica Sinica, 2023, 49(11): 3100-3109.
[12] ZHANG Yan-Yan, GUAN Han-Wen, LIU Lin-Ru, HE Li, DUAN Jian-Zhao, WANG Chen-Yang, GUO Tian-Cai, FENG Wei. Effects of phosphorus application on spike and fertile floret development and yield of winter wheat under different water treatments [J]. Acta Agronomica Sinica, 2023, 49(10): 2753-2765.
[13] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[14] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[15] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .