Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1193-1206.doi: 10.3724/SP.J.1006.2024.31049
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Jia-Ting(), BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi*(
)
[1] | Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan M U, Sarwar M I. A review: impact of salinity on plant growth. Nat Sci, 2019, 1: 34-40. |
[2] | 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895. |
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract). | |
[3] | 杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用. 中国科学院院刊, 2015, 30(增刊1): 162-170. |
Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China. Bull Chin Acad Sci, 2015, 30(S1): 162-170 (in Chinese with English abstract). | |
[4] | 邢锦城, 陈超, 董静, 刘冲, 朱小梅, 洪立洲. 长江中下游及黄淮冬麦区小麦主栽品种耐盐性评价. 大麦与谷类科学, 2017, 34(6): 8-13. |
Xing J C, Chen C, Dong J, Liu C, Zhu X M, Hong L Z. Evaluation of salt tolerance of main wheat cultivars planted in the middle and lower reaches of the Yangtze River and Huang Huai area. Barley Cereal Sci, 2017, 34(6): 8-13 (in Chinese with English abstract). | |
[5] |
Richards R A. Should selection for yield in saline conditions be made on saline or non-saline soils. Euphytica, 1983, 32: 431-438.
doi: 10.1007/BF00021452 |
[6] |
Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003, 253: 201-218.
doi: 10.1023/A:1024553303144 |
[7] |
El-Hendawy S E, Hassan W M, Al-Suhaibani N A, Refay Y, Abdella K A. Comparative performance of multivariable agro- physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci, 2017, 8: 435.
doi: 10.3389/fpls.2017.00435 pmid: 28424718 |
[8] | Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next. Aust J Plant Physiol, 1995, 22: 875-884. |
[9] |
Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007 |
[10] |
Genc Y, McDonald G K, Tester M. Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ, 2007, 30: 1486-1498.
doi: 10.1111/pce.2007.30.issue-11 |
[11] |
Tao R, Ding J, Li C, Zhu X, Guo W, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.
doi: 10.3389/fpls.2021.646175 |
[12] |
Masarmi A G, Solouki M, Fakheri B, Kalaji H M, Mahgdingad N, Golkari S, Telesiński A, Lamlom S F, Kociel H, Yousef A F. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. PLoS One, 2023, 18: e0282606.
doi: 10.1371/journal.pone.0282606 |
[13] |
Wang M, Xia G M. The landscape of molecular mechanisms for salt tolerance in wheat. Crop J, 2018, 6: 42-47.
doi: 10.1016/j.cj.2017.09.002 |
[14] |
Tavakkoli E, Fatehi F, Rengasamy P, McDonald G K. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. J Exp Bot, 2012, 63: 3853-3867.
doi: 10.1093/jxb/ers085 pmid: 22442423 |
[15] |
Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T. Bread wheat with high salinity and solidity tolerance. Front Plant Sci, 2019, 10: 1280.
doi: 10.3389/fpls.2019.01280 |
[16] |
Cuin T A, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ, 2011, 34: 947-961.
doi: 10.1111/pce.2011.34.issue-6 |
[17] | 豆昕桐, 王英杰, 王华忠, 岳洁瑜. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976-4992. |
Dou X T, Wang Y J, Wang H Z, Yue J Y. Physiological response and tolerance difference of two wheat varieties to NaCl stress. Acta Ecol Sin, 2021, 41: 4976-4992 (in Chinese with English abstract). | |
[18] |
Luo Q L, Teng W, Fang S, Li H W, Li B, Chu J F, Li Z S, Zheng Q. Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. Crop J, 2019, 7: 378-392.
doi: 10.1016/j.cj.2018.11.009 |
[19] |
Zhang Y, Liu Z, Khan A A, Lin Q, Han Y, Mu P, Liu Y, Zhang H, Li L, Meng X, Ni Z, Xin M. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci Rep, 2016, 6: 21476.
doi: 10.1038/srep21476 |
[20] | Yu L, Wang W W, Niu L Y, Wang W, Lu L, Wang F Z, Wang L P, Wang Y, Zang X J. A new cultivation technique of Cangmai 6005 for high yield in Cangzhou dry-alkali land. Asian Agric Res, 2018, 10: 68-70. |
[21] |
Shan L, Li C, Chen F, Zhao S, Xia G. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ, 2008, 31: 1128-1137.
doi: 10.1111/pce.2008.31.issue-8 |
[22] |
Wang Z Y, Qin X H, Li J H, Fan L F, Zhou Q, Wang Y Q, Zhao X, Xie C J, Wang Z Y, Huang L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants. Environ Exp Bot, 2019, 160: 120-130.
doi: 10.1016/j.envexpbot.2019.01.014 |
[23] | 梁超, 王超, 杨秀风, 张秀田, 王玮. ‘德抗961’小麦耐盐生理特性研究. 西北植物学报, 2006, 26: 2075-2082. |
Liang C, Wang C, Yang X F, Zhang X T, Wang W. Salt-tolerant physiological characters of wheat variety Dekang 961. Acta Bot Boreal-Occident Sin, 2006, 26: 2075-2082 (in Chinese with English abstract). | |
[24] |
Ma Q, Zhou H J, Sui X Y, Su C X, Yu Y C, Yang H B, Dong C H. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress. Plant Growth Regul, 2021, 94: 33-48.
doi: 10.1007/s10725-021-00694-9 |
[25] |
Guo G F, Ge P, Ma C Y, Li X H, Lü D W, Wang S L, Ma W J, Yan Y M. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics, 2012, 75: 1867-1885.
doi: 10.1016/j.jprot.2011.12.032 pmid: 22245046 |
[26] |
Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep, 2017, 7: 2731.
doi: 10.1038/s41598-017-03024-0 pmid: 28578401 |
[27] | 马雅琴, 翁跃进. 引进春小麦种质耐盐性的鉴定评价. 作物学报, 2005, 31: 58-64. |
Ma Y Q, Weng Y J. Evaluation for salt tolerance in spring wheat cultivars introduced from abroad. Acta Agron Sin, 2005, 31: 58-64 (in Chinese with English abstract). | |
[28] |
Wang W, Wang W, Wu Y, Li Q, Zhang G, Shi R, Yang J, Wang Y, Wang W. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. J Integr Plant Biol, 2020, 62: 631-651.
doi: 10.1111/jipb.v62.5 |
[29] | 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73. |
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat-Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73 (in Chinese with English abstract). | |
[30] | Kamiab F, Talaie A, Javanshah A, Khezri M, Khalighi A. Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Ann Biol Res, 2012, 3: 5545-5551. |
[31] |
Soda N, Ephrath J E, Dag A, Beiersdorf I, Presnov E, Yermiyahu U, Ben-Gal A. Root growth dynamics of olive (Olea europaea L.) affected by irrigation induced salinity. Plant Soil, 2017, 411: 305-318.
doi: 10.1007/s11104-016-3032-9 |
[32] |
Tan J L, Ben-Gal A, Shtein I, Bustan A, Dag A, Erel R. Root structural plasticity enhances salt tolerance in mature olives. Environ Exp Bot, 2020, 179: 104224.
doi: 10.1016/j.envexpbot.2020.104224 |
[33] |
Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91: 503-527.
doi: 10.1093/aob/mcg058 |
[34] |
Ashraf M, O’Leary J W. Responses of newly developed salt- tolerant genotype of spring wheat to salt stress: yield components and ion distribution. J Agron Crop Sci, 1996, 176: 91-101.
doi: 10.1111/jac.1996.176.issue-2 |
[35] |
Rashid A, Querishi R H, Hollington P A, Jones R G W. Comparative responses of wheat cultivars to salinity at the seedling stage. J Agron Crop Sci, 1999, 182: 199-207.
doi: 10.1046/j.1439-037x.1999.00295.x |
[36] |
Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res, 2004, 85: 125-133.
doi: 10.1016/S0378-4290(03)00157-6 |
[37] |
Walker D J, Leigh R A, Miller A J. Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA, 1996, 93: 10510-10514.
doi: 10.1073/pnas.93.19.10510 pmid: 11607707 |
[38] | Isabelle C, Cécile L, Martin B, Hervé S. Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot, 2013, 3: 833-848. |
[39] |
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol, 2014, 171: 670-687.
doi: 10.1016/j.jplph.2014.01.009 |
[40] | 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位. 作物学报, 2022, 48: 2646-2654. |
Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034. Acta Agron Sin, 2022, 48: 2646-2654 (in Chinese with English abstract). | |
[41] | 周升辉, 吴秋红, 谢菁忠, 陈娇娇, 陈永兴, 傅琳, 王国鑫, 于美华, 王振忠, 张德云, 王令, 王丽丽, 张艳, 梁荣奇, 韩俊, 刘志勇. 小麦燕大1817×北农6号重组自交系群体在正常和盐胁迫水培条件下苗期性状的QTL定位. 作物学报, 2016, 42: 1764-1778. |
Zhou S H, Wu Q H, Xie J Z, Chen J J, Chen Y X, Fu L, Wang G X, Yu M H, Wang Z Z, Zhang D Y, Wang L, Wang L L, Zhang Y, Liang R Q, Han J, Liu Z Y. Mapping QTLs for wheat seedling traits in RILs population of Yanda 1817 × Beinong 6 under normal and salt-stress conditions. Acta Agron Sin, 2016, 42: 1764-1778 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01764 |
|
[42] |
Richards R A, Dennett C W, Qualset C O, Epstein E, Norlyn J D, Winslow M D. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res, 1987, 15: 277-287.
doi: 10.1016/0378-4290(87)90017-7 |
[43] |
Houshmand S, Arzani A, Maibody S A M, Feizi M. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Res, 2005, 91: 345-354.
doi: 10.1016/j.fcr.2004.08.004 |
[44] | Weimberg R. Solute adjustment in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plant, 1987, 70: 381-388. |
[45] |
Chen Z, Zhou M, Newman I A, Mendham N J, Zhang G, Shabala S. Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. Funct Plant Biol, 2007, 34: 150-162.
doi: 10.1071/FP06237 |
[46] |
Cuin T A, Betts S A, Chalmandrier R, Shabala S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot, 2008, 59: 2697-2706.
doi: 10.1093/jxb/ern128 |
[47] |
Oyiga B C, Sharma R C, Baum M, Ogbonnaya F C, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ, 2018, 41: 919-935.
doi: 10.1111/pce.v41.5 |
[48] |
Davenport R, James R A, Zakrisson-Plogander A, Tester M, Munns R. Control of sodium transport in durum wheat. Plant Physiol, 2005, 137: 807-818.
doi: 10.1104/pp.104.057307 pmid: 15734907 |
[49] |
Santa-Maria G E, Epstein E. Potassium/sodium selectivity in wheat and amphiploid cross wheat × Lophopyrum elongatum. Plant Sci, 2001, 160: 523-534.
pmid: 11166440 |
[50] |
Meneguzzo S, Navari-Izzo F, Izzo R. NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. J Plant Physiol, 2000, 156: 711-716.
doi: 10.1016/S0176-1617(00)80236-9 |
[51] |
Gaxiola R A, Rao R, Sherman A, Grisafi P, Alper S L, Fink G R. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA, 1999, 96: 1480-1485.
doi: 10.1073/pnas.96.4.1480 pmid: 9990049 |
[52] |
Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q, Zhang Y, Feng J, Sun F, Sun J, Yang G, He G. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. Plant Biotechnol J, 2021, 19: 1588-1601.
doi: 10.1111/pbi.13572 pmid: 33638922 |
[53] |
Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105 |
[54] |
Cuin T A, Tian Y, Betts S A, Chalmandrier R, Shabala S. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol, 2009, 36: 1110-1119.
doi: 10.1071/FP09051 |
[55] |
Raven J A. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use energy, nitrogen and water. New Phytol, 1985, 101: 25-77.
doi: 10.1111/j.1469-8137.1985.tb02816.x pmid: 33873830 |
[1] | QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583. |
[2] | MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405. |
[3] | ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383. |
[4] | ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1419. |
[5] | LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311. |
[6] | LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157. |
[7] | XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896. |
[8] | HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003. |
[9] | WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813. |
[10] | QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090. |
[11] | ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990. |
[12] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[13] | ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733. |
[14] | JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792. |
[15] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
|