Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1486-1502.doi: 10.3724/SP.J.1006.2024.34157

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang

LI Chang-Xi(), DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun*()   

  1. College of Agriculture, Tarim University, Alar 843300, Xinjiang, China
  • Received:2023-09-16 Accepted:2024-01-30 Online:2024-06-12 Published:2024-02-20
  • Contact: * E-mail: xnmeiyj@126.com
  • Supported by:
    National Natural Science Foundation of China “Genome-wide Mining of Specific Yield Traits (QTS) in Upland Cotton from Southern Xinjiang”(31560408)

Abstract:

To study the inheritance of agricultural characteristics and lint yield traits in upland cotton parents and F1 crosses can provide the reference for breeding workers to select and improve certain traits. Four agronomic characters and four yield traits of 130 varieties (lines) and their 206 F1 crosses of upland cotton were analyzed on additive and effects by a genetic model with additive, dominance, and their interaction effects with the environment, genetic contribution analysis and decision coefficient analysis were conducted on the observation results. The results showed that these traits had rich genetic diversity with the coefficient of variation of the eight traits of the parents ranging from 5.54% to 50.83%, and the F1 crosses ranging from 3.96% to 55.87%. The additive contribution rate of agronomic traits (except for the first fruit branch node position to yield) to yield traits reached a very significant level (contribution rate was 4%-100%), and the additive contribution rate and dominant contribution rate of five petal boll rate and plant height to the boll number and boll weight and the contribution rate of dominant × environmental interaction reached a positive and significant level above 0.01. The genetic effects controlled by additive effects included the height of the first fruit branch, plant height, five petal boll rate, boll weight, and lint percentage, with lint percentage being the largest. Except for the small additive effect, plant height exhibits significant differences in dominant and additive effects × environmental interaction effects, dominance × environmental interaction effect and the generalized heritability of interaction were the maximum. The main decision-making and limiting traits for improving the lint yield in hybrid offspring of upland cotton had been identified. The coefficient of variation of upland cotton was relatively large. The five petal boll rate and plant height played a more important role in increasing the boll number and boll weight per plant. The boll number, boll weight, and lint percentage were the main decision-making traits for increasing the lint yield.

Key words: upland cotton, yield traits, agronomic characters, genetic diversity, genetic contribution analysis, decision coefficient analysis

Table S1

130 parental names"

亲本编号
Parent number
品种(系)名称
Name of parent (line)
亲本编号
Parent number
品种(系)名称
Name of parent (line)
亲本编号
Parent number
品种(系)名称
Name of parent (line)
1 TH2# 45 21P245 89 21P192
2 21P122 46 21P244 90 21P191
3 7751 47 21P243 91 21P190
4 21P469 48 21P242 92 21P189
5 21P297 49 21P241 93 21P187
6 21P296 50 21P240 94 21P186
7 21P295 51 21P239 95 21P184
8 21P294 52 21P339 96 21P182
9 21P291 53 21P238 97 21P181
10 21P289 54 21P237 98 21P177
11 21P285 55 21P236 99 21P176
12 21P284 56 21P235 100 21P175
13 21P283 57 21P234 101 21P174
14 21P282 58 21P232 102 21P173
15 21P281 59 21P231 103 21P170
16 21P280 60 21P229 104 21P169
17 21P279 61 21P228 105 21P168
18 21P278 62 21P227 106 21P167
19 21P277 63 21P226 107 21P165
20 21P276 64 21P223 108 21P164
21 21P275 65 21P222 109 21P163
22 21P274 66 21P221 110 21P162
23 21P273 67 21P219 111 21P161
24 21P272 68 21P217 112 21P160
25 21P271 69 21P216 113 21P159
26 21P270 70 21P215 114 21P158
27 21P269 71 21P214 115 21P157
28 21P268 72 21P213 116 21P156
29 21P267 73 21P212 117 21P154
30 21P266 74 21P210 118 21P149
31 21P265 75 21P209 119 21P146
32 21P264 76 21P208 120 21P145
33 21P263 77 21P207 121 21P141
34 21P262 78 21P206 122 21P139
35 21P261 79 21P203 123 21P135
36 21P260 80 21P202 124 21P132
37 21P259 81 21P201 125 21P131
38 21P258 82 21P200 126 21P130
39 21P255 83 21P199 127 21P129
40 21P253 84 21P198 128 21P128
41 21P249 85 21P197 129 21P126
42 21P248 86 21P195 130 21P125
43 21P247 87 21P194
44 21P246 88 21P193

Table S2

206 F1 collocations"

组合编号
Crosses number
F1组配
F1 collocations
组合编号
Crosses number
F1组配
F1 collocations
组合编号
Crosses number
F1组配
F1 collocations
1 TH2#×21P122 70 TH2#×21P162 139 21P122×21P216
2 TH2#×7751 71 TH2#×21P161 140 21P122×21P214
3 TH2#×21P469 72 TH2#×21P160 141 21P122×21P208
4 TH2#×21P297 73 TH2#×21P159 142 21P122×21P206
5 TH2#×21P295 74 TH2#×21P158 143 21P122×21P203
6 TH2#×21P294 75 TH2#×21P157 144 21P122×21P200
7 TH2#×21P284 76 TH2#×21P156 145 21P122×21P199
8 TH2#×21P283 77 TH2#×21P145 146 21P122×21P198
9 TH2#×21P281 78 TH2#×21P146 147 21P122×21P197
10 TH2#×21P277 79 TH2#×21P130 148 21P122×21P194
11 TH2#×21P275 80 TH2#×21P129 149 21P122×21P193
12 TH2#×21P274 81 TH2#×21P128 150 21P122×21P192
13 TH2#×21P273 82 TH2#×21P126 151 21P122×21P191
14 TH2#×21P271 83 TH2#×21P125 152 21P122×21P190
15 TH2#×21P266 84 21P122×21P296 153 21P122×21P189
16 TH2#×21P264 85 21P122×21P295 154 21P122×21P187
17 TH2#×21P263 86 21P122×21P294 155 21P122×21P182
18 TH2#×21P262 87 21P122×21P291 156 21P122×21P163
19 TH2#×21P260 88 21P122×21P289 157 21P122×21P149
20 TH2#×21P246 89 21P122×21P285 158 21P122×21P146
21 TH2#×21P241 90 21P122×21P284 159 21P122×21P145
22 TH2#×21P237 91 21P122×21P283 160 21P122×21P139
23 TH2#×21P235 92 21P122×21P282 161 21P122×21P135
24 TH2#×21P234 93 21P122×21P281 162 21P122×21P132
25 TH2#×21P232 94 21P122×21P280 163 21P122×21P131
26 TH2#×21P231 95 21P122×21P279 164 21P122×21P130
27 TH2#×21P229 96 21P122×21P278 165 21P122×21P129
28 TH2#×21P228 97 21P122×21P277 166 21P122×21P128
29 TH2#×21P222 98 21P122×21P276 167 21P122×21P126
30 TH2#×21P221 99 21P122×21P275 168 21P122×21P125
31 TH2#×21P219 100 21P122×21P274 169 7751×21P469
32 TH2#×21P217 101 21P122×21P273 170 7751×21P297
33 TH2#×21P216 102 21P122×21P272 171 7751×21P283
34 TH2#×21P215 103 21P122×21P271 172 7751×21P281
35 TH2#×21P214 104 21P122×21P270 173 7751×21P280
36 TH2#×21P213 105 21P122×21P269 174 7751×21P279
37 TH2#×21P212 106 21P122×21P268 175 7751×21P278
38 TH2#×21P210 107 21P122×21P267 176 7751×21P274
39 TH2#×21P209 108 21P122×21P266 177 7751×21P273
40 TH2#×21P207 109 21P122×21P265 178 7751×21P271
41 TH2#×21P206 110 21P122×21P264 179 7751×21P266
42 TH2#×21P203 111 21P122×21P263 180 7751×21P260
43 TH2#×21P202 112 21P122×21P262 181 7751×21P234
44 TH2#×21P201 113 21P122×21P261 182 7751×21P232
45 TH2#×21P200 114 21P122×21P259 183 7751×21P223
46 TH2#×21P198 115 21P122×21P258 184 7751×21P222
47 TH2#×21P195 116 21P122×21P255 185 7751×21P219
48 TH2#×21P194 117 21P122×21P253 186 7751×21P217
49 TH2#×21P193 118 21P122×21P249 187 7751×21P216
50 TH2#×21P192 119 21P122×21P248 188 7751×21P210
51 TH2#×21P191 120 21P122×21P247 189 7751×21P209
52 TH2#×21P189 121 21P122×21P245 190 7751×21P200
53 TH2#×21P187 122 21P122×21P244 191 7751×21P197
54 TH2#×21P186 123 21P122×21P243 192 7751×21P193
55 TH2#×21P184 124 21P122×21P242 193 7751×21P192
56 TH2#×21P182 125 21P122×21P241 194 7751×21P191
57 TH2#×21P181 126 21P122×21P240 195 7751×21P190
58 TH2#×21P177 127 21P122×21P239 196 7751×21P189
59 TH2#×21P176 128 21P122×21P339 197 7751×21P184
60 TH2#×21P175 129 21P122×21P238 198 7751×21P167
61 TH2#×21P174 130 21P122×21P237 199 7751×21P164
62 TH2#×21P173 131 21P122×21P236 200 7751×21P162
63 TH2#×21P170 132 21P122×21P234 201 7751×21P154
64 TH2#×21P169 133 21P122×21P232 202 7751×21P141
65 TH2#×21P168 134 21P122×21P227 203 7751×21P129
66 TH2#×21P167 135 21P122×21P226 204 7751×21P128
67 TH2#×21P165 136 21P122×21P223 205 7751×21P126
68 TH2#×21P164 137 21P122×21P222 206 7751×21P125
69 TH2#×21P163 138 21P122×21P221

Table 1

Phenotypic distributions of eight traits of parents and their F1 population for two years"

世代
Generation
年份Year 参数
Parameter
第一果
枝节位
Fruit
branch position
第一果
枝高度
Fruit branch height
(cm)
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate
(%)
单株铃数
Boll number
铃重
Boll weight
(g)
衣分
Lint
percentage
(%)
单株皮棉产量
Lint yield
(g)
亲本 2021 最大值 Max. 7.86 38.86 126.83 88.00 16.43 7.78 52.24 43.83
Parents 最小值 Min. 2.71 11.43 56.29 0 3.29 2.20 34.29 6.55
极差 Range 5.15 27.43 70.54 88.00 13.14 5.58 17.95 37.28
平均值 Average 5.54 24.25 93.69 30.52 8.40 5.91 41.85 20.80
标准差 SD 1.06 5.23 13.01 15.51 2.36 0.74 2.32 6.60
变异系数 CV (%) 19.12 21.56 13.88 50.83 28.09 12.57 5.54 31.73
F1 2021 最大值 Max. 8.00 45.00 119.29 86.00 16.57 8.30 51.86 48.97
F1 generation 最小值 Min. 3.43 12.57 65.14 0 2.57 3.79 37.28 7.75
F1 2021 极差 Range 4.57 32.43 54.15 86.00 14.00 4.51 14.58 41.22
F1 generation 平均值 Average 5.68 25.99 100.10 37.37 9.83 6.39 43.08 27.04
标准差 SD 0.87 5.00 8.50 20.88 2.29 0.65 1.71 7.04
变异系数 CV (%) 15.37 19.24 8.49 55.87 23.30 10.18 3.96 26.02
亲本 2022 最大值 Max. 6.43 32.71 107.57 84.00 16.57 8.73 48.40 40.97
Parents 最小值 Min. 4.57 16.57 48.14 10.00 5.57 4.22 35.31 14.42
极差 Range 1.86 16.14 59.43 74.00 11.00 4.51 13.09 26.55
平均值 Average 5.36 24.18 78.45 34.85 9.61 6.16 41.08 24.29
标准差 SD 0.25 3.20 11.08 15.14 1.47 0.73 2.26 4.71
变异系数 CV (%) 4.68 13.25 14.12 43.44 15.31 11.80 5.50 19.41
F1 2022 最大值 Max. 7.57 46.29 108.57 88.00 15.71 8.61 49.14 48.06
F1 generation 最小值 Min. 3.43 13.71 48.43 4.00 4.14 2.47 36.18 9.18
极差 Range 4.14 32.58 60.14 84.00 11.57 6.14 12.96 38.88
平均值 Average 5.59 27.15 85.59 40.37 9.13 6.03 43.25 23.79
标准差 SD 0.38 4.30 8.52 17.85 1.83 0.92 2.06 5.94
变异系数 CV (%) 6.71 15.83 9.95 44.23 20.05 15.17 4.77 24.98

Table 2

Contribution rates of genetic components on four yield traits due to four agronomic traits"

性状
Trait
参数
Parameter
第一果枝节位
Fruit branch position
第一果枝高度
Fruit branch height
株高
Plant height
五瓣铃率
Five petal boll rate
单株铃数
Boll number
CRA(C→T) 0.88** 0.99** 0.99** 1.00**
CRD(C→T)
CRAE(C→T) -0.11 0.50** 0.99**
CRDE(C→T) 0.04* 0.85** 0.97** 0.99**
铃重
Boll weight
CRA(C→T) 0.04** 0.97** 0.97** 1.00**
CRD(C→T) 0.04** 1.00** 1.00**
CRAE(C→T) -0.10 0.99** 1.00**
CRDE(C→T) 0.01 0.99** 1.00** 1.00**
衣分
Lint percentage
CRA(C→T) -0.01 0.15** 0.20** 0.95**
CRD(C→T) 0.02* 0.97** 0.99**
CRAE(C→T) 0.01** -0.24 0.98**
CRDE(C→T) 0.01** 0.94** 0.99** 0.99**
单株皮棉产量
Lint yield
CRA(C→T) 0.12** 0.27** 0.31** 0.95**
CRD(C→T) -0.37 0.98** 0.99**
CRAE(C→T)
CRDE(C→T) 0.03** -0.52 0.69** 0.88**

Table 3

Genetic variance ratio and heritability estimates for eight traits in upland cotton"

参数
Parameter
第一果枝
节位
Fruit branch position
第一果枝
高度
Fruit branch height (cm)
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate (%)
单株铃数
Boll number
铃重
Boll weight
(g)
衣分
Lint
percentage (%)
单株皮棉
产量
Lint yield
(g)
VA/Vp 0.02 0.06* 0.01* 0.07* 0 0.06+ 0.27* 0.01
VD/Vp 0 0 0.10** 0.09+ 0.01 0.06* 0.08+ 0.04
VAE/Vp 0.19* 0.01 0.23* 0 0.02 0.01+ 0.12* 0
VDE/Vp 0.45* 0.50* 0.51** 0.49* 0.43* 0.19 0.17* 0.40*
Ve/Vp 0.34 0.42+ 0.15 0.34+ 0.54* 0.68* 0.36+ 0.55*
h2N 0.02 0.06* 0.01 0.07* 0 0.06+ 0.27* 0.01
H2B 0.02 0.06 0.11+ 0.17+ 0.01 0.12* 0.36* 0.05+
h2NE 0.19* 0.01 0.23* 0 0.02 0.01+ 0.12* 0
H2BE 0.64* 0.52* 0.74* 0.49* 0.45* 0.20 0.28* 0.40*

Table 4

Additive genetic effects of seven traits for some of the participating parents"

亲本
Parents
第一果枝节位
Fruit branch
position
第一果枝高度
Fruit branch height (cm)
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate (%)
铃重
Boll weight
(g)
衣分
Lint percentage
(%)
单株皮棉产量
Lint yield
(g)
TH2# 0.09 0.55+ 1.57 11.68 0.35* 1.75** 1.20+
21P122 -0.04 1.43* 1.26 2.57 -0.13+ 0.73** 0.45*
7751 0.15 2.17* 1.78 -5.67* 0.11+ 2.59** 1.05+
21P296 0.03 -0.95+ -1.02 3.87 0.05 -0.08+ -0.25**
21P285 0.08 0.65+ 0.62 -1.16 0.14+ -0.08 0.14
21P283 -0.04** -1.15* -0.43 -1.58* -0.17+ -0.12 -0.31*
21P282 -0.01 -0.73* -0.66 1.70 -0.32* -0.35* -0.55*
21P278 0.01 -0.46 0.05 -2.65 -0.13+ -1.02** -0.08*
21P277 0.03 0.49 0.68 1.22* 0.13 -0.38 1.33*
21P274 0.01 -0.20 -0.50 2.69 0.07 0.33+ 0.51+
21P269 0.05 0.72 -0.20 -1.96 -0.01 -0.63** -0.19**
21P267 0.05 -0.01 0.74 -0.02 0.02 0.99* 0.31
21P264 0 0.17 1.45 6.43+ 0.01 0.10* 0.93*
21P255 0.04 -0.35 -0.20 -2.87 0.01 0.50* 0.58**
21P249 0.03 -1.02* -0.77 0.61+ 0.07+ -0.35 0.26*
21P245 0.01 0.05* 0.15* -0.07 0.01 -0.22 0.23**
21P244 -0.02 0.63 0.44 4.04 -0.02 0.83* 0.49
21P239 -0.04* -0.10* 0.63 -3.67+ -0.05 0.01 0.36
21P232 0.01+ 0.04 -0.63 7.48 0.19 0.49** 0.33+
21P229 0.03 0.74 -0.76 4.22 0.07* 0.20* 0.75+
21P215 -0.09 -0.47 -0.22 0.85 -0.02 0.87** -0.35
21P210 -0.12 -0.62 1.69 1.64 -0.01 1.30+ 1.68+
21P200 0.05 1.30 -0.57 2.04+ 0 0.44* 0.26*
21P176 0.02 0.21 0.35 -1.44 0.39* 0.47* 0.57**
21P170 -0.04 0.08 0.80 0.33 0.06+ 0.68* 0.30**
21P160 0.03 -0.17 -0.97 3.42 -0.13+ -0.59+ -0.33*
21P156 0 0.01 -0.75 -3.26+ -0.05+ -1.88** -0.12**
21P154 0.05 0.67* 1.21 3.32+ 0.17* 1.32** 0.75*
21P128 0.02 0.50* -0.09 2.77+ 0 0.34 0.50*
21P126 0.06 0.75 0.37 -0.68 0.02 0.74** 0.16

Table 5

Dominant effects of six traits for some of the participating parents"

亲本
Parents
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate
(%)
单株铃数
Boll number
铃重
Boll weight
(g)
衣分
Lint percentage
(%)
单株皮棉产量
Lint yield
(g)
TH2# -8.25 -6.17** -0.47 -0.07 -1.25+ -3.22+
21P122 1.12 -1.25 0.30+ -0.15** 0.28* 0.91
7751 -13.85+ 26.04* -0.27** -0.06* -1.54* -2.23**
21P469 -5.15+ -2.28 -0.18 -0.29* 0.64+ -1.56+
21P297 -5.97* -4.22* -0.34+ -0.04 0.10 -1.47*
21P295 -2.61 -4.33* -0.27+ -0.09* 0.61* -1.26*
21P291 -4.48+ -0.14 -0.08 -0.01** -0.12** -0.64
21P279 -4.51* -0.52** -0.02* 0.07+ -0.38* -0.06*
21P273 -3.28+ -3.97 -0.04 -0.17* 0.19* -0.69+
21P271 -7.15+ 0 -0.16 -0.06* 0.78* -0.71+
21P253 -2.27+ -3.72* -0.32 -0.23 -0.02** -2.37+
21P245 -2.34+ 2.87+ 0.06+ -0.23+ -0.80+ -0.74+
21P239 2.01+ 0.94* -0.02** -0.02+ -0.08 -0.21**
21P237 0.46 -3.95* -0.15** -0.09** 0.01 -1.03**
21P236 0.32 -2.82* 0.10 -0.12+ -0.19* 0.09
21P202 1.71* -4.91* 0.04 -0.10+ -1.03* -0.43+
21P197 -2.32 3.33** 0.06 -0.20+ -0.77* -0.61+
21P192 -1.09** -0.36+ 0.16 -0.14 -0.71* 0.25+
21P191 -1.95** 1.68* 0.18 -0.02+ -0.40* 0.96
21P187 -0.57 1.03 0.12 -0.27** -0.38+ -0.17+

Table 6

Dominant effects of six traits for some test crosses"

组合
Crosses
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate
(%)
单株铃数
Boll number
铃重
Boll weight
(g)
衣分
Lint percentage
(%)
单株皮棉产量
Lint yield
(g)
TH2#×21P122 -6.03 -5.42* 0.20 -0.23* -0.36+ 0.05
TH2#×21P266 1.83 9.67+ 0.19 0.07 0.48 1.32*
TH2#×21P263 3.08 9.35+ 0.12 0.22* 0.33+ 1.71
TH2#×21P222 1.28 -2.24 -0.02 -0.42+ -0.79+ -1.90
TH2#×21P181 -2.95+ -6.94+ 0.06 0.32* 0.76+ 1.51
TH2#×21P170 2.28+ 4.77+ 0.06 0.19* 1.30 1.61
TH2#×21P159 2.02 3.63* -0.07 0.55+ 0.01 1.17
21P122×21P282 0.29 7.71+ -0.30 0.02 0.12+ -1.22
21P122×21P281 0.24* -2.76+ -0.19 -0.16* 0.71 -1.28+
21P122×21P262 0.70 6.98* 0.25 -0.10 0.28 1.11+
21P122×21P249 -9.54+ -1.09+ -0.09+ -0.04 0.10 -0.60
21P122×21P239 -2.29 -5.45* 0.18 -0.01 0.16 0.97*
21P122×21P237 -5.86 -3.49+ 0.14 0.19 0.10 1.24+
21P122×21P200 4.55* -1.99 0.75 0.27 0.29+ 5.24
21P122×21P194 -0.05 -0.08 0.26 0.23+ -0.07 2.25+
21P122×21P193 -1.25 -5.35 -0.22 -0.09+ -0.61+ -1.70+
21P122×21P182 -0.40 2.40** -0.21 0.14+ -0.41 -0.87
21P122×21P163 3.49+ 15.44+ 0.13 0.47 0.17 2.29
21P122×21P146 0.76+ 10.55+ 0.19 0.13+ 1.17 1.82
7751×21P260 3.42 -7.67+ -0.02 -0.51+ -1.58 -2.25

Table 7

Dominance × environment interaction effect of eight traits for some parents"

亲本
Parents
第一果枝节位
Fruit branch position
第一果枝高度
Fruit branch height (cm)
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate (%)
单株铃数
Boll
number
铃重
Boll weight
(g)
衣分
Lint
percentage (%)
单株皮棉产量
Lint yield
(g)
21P122in 2021 0.73 -9.36 -13.02* 20.33+ -0.32 -0.71 -1.08+ -6.01*
21P122in 2022 -0.49** -1.43 15.24* -22.85+ 1.89 0.47+ 1.46* 8.27+
21P262in 2021 0.54 -0.37 -10.85 -12.08+ -1.71* -0.24 -0.07+ -5.75*
21P262in 2022 -0.29 -0.61 8.91+ 11.94 0.60* 0.09 0.26 2.06*
21P247in 2021 0.47 -0.13 -0.87* 2.92 0.02 -0.04 -0.52* -0.79*
21P247in 2022 -0.09 -1.49 2.05 3.85 0.85** 0.23 0.29 3.34*
21P227in 2021 -0.53+ -3.53 -3.05+ 5.54 -1.61+ 0.03 -0.06 -4.21+
21P227in 2022 0.08 -0.07 2.88+ 5.09 1.17** 0.08 -0.26 3.22**
21P198in 2021 0.28 5.85 12.98 7.75 -0.29* -0.12 -1.15* -2.07*
21P198in 2022 -0.18+ -6.04* -10.78* -5.58* 0.62* 0.37 1.76* 4.37+
21P181in 2021 -0.40* -1.66* -9.28+ -2.11* 0.23 0.25 -0.16 1.80
21P181in 2022 0.10* 3.15* 13.53* 11.43* -0.55 -0.45 -0.19 -3.88
21P173in 2021 0.09 2.60 -1.58 -1.22 -1.17* -0.04 -0.88* -3.82*
21P173in 2022 -0.23+ -3.10* -1.76 -3.28 0.49* 0.07+ 1.16* 2.42*
21P162in 2021 -0.70* -5.39* -16.68+ -6.68* -0.22+ 0.15 -1.50* -0.59
21P162in 2022 0.26* 2.24* 4.77+ 11.30+ 0.29 -0.21 0.66* -0.27
21P158in 2021 -0.17 -0.79 -10.50+ -7.78+ -1.69+ 0.21 -0.61* -4.22
21P158in 2022 0.09+ 1.55+ 6.31* 9.26* 1.26+ -0.17 0.04 2.71+
21P156in 2021 -0.10* -2.33+ -8.14+ -1.51+ -1.24 -0.04 -0.72+ -3.46+
21P156in 2022 0.10 -0.15 0.49 3.21 1.32* -0.11 -0.49 2.08+

Table 8

Dominance × environment interaction effect of some crosses for eight traits"

组合
Crosses
第一果枝节位
Fruit branch position
第一果枝高度
Fruit branch height (cm)
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate (%)
单株铃数
Boll
number
铃重
Boll weight (g)
衣分
Lint
percentage (%)
单株皮棉
产量
Lint yield
(g)
TH2#×21P191in 2021 -0.64 -7.45* -2.32 -6.16 0.55+ -0.10 2.25* 2.30+
TH2#×21P191in 2022 0.02 -1.19* -6.80* 7.55+ -1.63** -0.25 -1.35* -6.74*
TH2#×21P158in 2021 0.12+ 0.54 13.32* 14.31 2.41* -0.09 1.53* 7.73+
TH2#×21P158in 2022 -0.05+ -1.58+ -14.69* -28.36* -2.17* 0 -0.68+ -6.50*
TH2#×21P157in 2021 -0.02 5.06* 10.81+ -14.40 2.98* 0.22 -0.20 9.59*
TH2#×21P157in 2022 -0.08 -0.74 -2.64 -4.85 -1.08* -0.29 -0.19 -4.72+
TH2#×21P156in 2021 0.03+ 6.15+ 12.61 5.72 2.33+ 0.04 -0.46 5.60+
TH2#×21P156in 2022 -0.02 -1.16 -1.42 -15.51+ -1.99** 0.20 0.78 -3.30+
TH2#×21P125in 2021 0.76* 8.65+ 3.93+ 4.35 4.14+ 0.12 0.02 12.30+
TH2#×21P125in 2022 -0.52* -6.05* -7.85 -11.81 -1.14+ -0.18 -0.70 -4.80*
21P122×21P265in 2021 0.14 -1.56 4.12+ 1.25 0.96+ 0.22+ 1.30* 4.17*
21P122×21P265in 2022 0.14 0.17 -5.51 10.26 -0.61 -0.86+ -1.91+ -7.25**
21P122×21P262in 2021 0.08+ 1.41 7.21+ 3.53 2.42* 0.23 0.33 7.87*
21P122×21P262in 2022 -0.11+ -2.11* -5.83+ 10.51 -1.11 -0.38+ 0.04 -5.11+
21P122×21P206in 2021 0.69+ 1.97 8.18+ -1.64 3.15* 0.09 0.91* 9.80*
21P122×21P206in 2022 -0.38 4.89+ -1.82 13.43 -1.98+ -0.21 -1.11+ -6.77+
7751×21P222in 2021 0.47+ 11.83+ 4.59 -10.78 0.05 -0.58 1.18+ -2.52
7751×21P222in 2022 -0.18 -6.34+ -4.57* 20.63* -0.49+ 0.36+ -0.08 0.55
7751×21P162in 2021 0.48* 3.32+ -0.27 8.42+ 0.37 0.06 3.14* 3.43
7751×21P162in 2022 -0.04 2.57+ 13.92* -7.43+ -0.16 -0.33 -2.31* -3.56

Table 9

Estimation of genetic correlation coefficients between for traits in the lint yield and other traits of upland cotton"

相关组分
Related components
第一果枝节位
Fruit branch position
第一果枝高度
Fruit branch height (cm)
株高
Plant height
(cm)
五瓣铃率
Five petal boll rate (%)
单株铃数
Boll number
铃重
Boll weight
(g)
衣分
Lint percentage (%)
rA 0.72 -0.93+ 1.00 1.00 0 0.16+ 1.00
rD 0 0 0.70 -0.70 0.88 1.00 0.09
rAE 0 0 0 0 0 0 0
rDE -0.24** -0.47* 0.25 0.10 0.93** 0.40 0.06
rP -0.05 -0.12** 0.27* 0.07+ 0.86** 0.48** 0.15**
rG -0.06 -0.09** 0.36* 0.10 0.87** 0.48** 0.14*

Table 10

Analysis of the decision coefficients of each trait on each genetic component of lint yield"

性状
Trait
加性
Additive
显性
Dominant
加性×环境
Additive ×
environment
显性×环境
Dominant ×
environment
表型
Phenotype
基因型
Genotype
决策系数
R(i)2
排序
Order
决策系数
R(i)2
排序
Order
决策系数
R(i)2
排序
Order
决策系数
R(i)2
排序
Order
决策系数
R(i)2
排序
Order
决策系数
R(i)2
排序
Order
第一果枝节位
Fruit branch position
-0.513 3 0 3 0 -0.058 6 -0.003 4 -0.004 4
第一果枝高度
Fruit branch height (cm)
-0.858 5 0 3 0 -0.218 7 -0.013 6 -0.008 5
株高
Plant height (cm)
-0.986 6 -0.482 5 0 -0.057 5 -0.071 7 -0.124 7
五瓣铃率
Five petal boll rate (%)
-1.004 7 -0.483 6 0 -0.010 4 -0.006 5 -0.010 6
单株铃数
Boll number
0 2 0.695 1 0 0.688 1 0.697 1 0.696 1
铃重
Boll weight (g)
0.122 1 -0.064 4 0 0.215 2 0.219 2 0.219 2
衣分
Lint percentage (%)
-0.618 4 0.026 2 0 0.020 3 0.034 3 0.034 3
[1] 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016, 49: 3465-3476.
doi: 10.3864/j.issn.0578-1752.2016.18.001
Yu S X, Fan S L, Wang H T, Wei H L, Pang C Y. Advances in high yield breeding of cotton in China. Sci Agric Sin, 2016, 49: 3465-3476. (in Chinese with English abstract)
[2] 喻树迅, 魏晓文, 赵新华. 中国棉花生产与科技发展. 棉花学报, 2000, 12: 327-329.
Yu S X, Wei X W, Zhao X H. Cotton production and technical development in China. Cotton Sci, 2000, 12: 327-329. (in Chinese with English abstract)
[3] 林晓阳, 赵洪平, 柳海东, 杜德志. 特早熟甘蓝型春油菜产量相关性状的杂种优势分析. 核农学报, 2023, 37: 720-729.
doi: 10.11869/j.issn.1000-8551.2023.04.0720
Li X Y, Zhao H P, Liu H D, Du D Z. Heterosis analysis of yield-related traits in ultra-early maturity spring oilseed rape (Brassica napus L.). Acta Agric Nucl Sin, 2023, 37: 720-729. (in Chinese with English abstract)
[4] 郭洁, 刘少隆, 周新桥, 陈达刚, 陈可, 叶婵娟, 李逸翔, 刘传光, 陈友订. 水稻籼粳杂种不育性的遗传机理及杂种优势利用. 广东农业科学, 2022, 49(9): 53-65.
Guo J, Liu S L, Zhou X Q, Chen D G, Chen K, Ye C J, Li Y X, Liu C G, Chen Y D. Genetic mechanism of hybrid sterility and utilization of indica-japonica inter-subspecific heterosis in rice. Guangdong Agric Sci, 2022, 49(9): 53-65. (in Chinese with English abstract)
[5] 冯羽飞. 8个春甘蓝自交系配合力与杂种优势分析. 西北农林科技大学硕士学位论文,陕西杨凌, 2022.
Feng Y F. Analysis on Combining Ability and Heterosis of Eight Spring Cabbage Inbred Lines. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022. (in Chinese with English abstract)
[6] 代勇强, 张新宇, 孙杰. 北疆棉花三系主要选育指标的遗传效应分析. 新疆农业科学, 2017, 54: 1-9.
Dai Y Q, Zhang X Y, Sun J. Genetic effect analysis of main breeding targets of three lines hybrids cotton in northern Xinjiang. Xinjiang Agric Sci, 2017, 54: 1-9 (in Chinese with English abstract).
[7] 纪莲莲, 张玉霞, 纪家华, 赵永民, 翟云明. 转基因棉花三系配合力及杂种优势分析. 种子, 2019, 38(2): 108-111.
Ji L L, Zhang Y X, Ji J H, Zhao Y M, Zhai Y M. Analysis on the heterosis and combining ability among transgenic three series matching of cotton (Gossypium hirsutum L.). Seed, 2019, 38(2): 108-111. (in Chinese with English abstract)
[8] 戴茂华, 刘丽英, 郑书宏, 王瑞清, 吴振良. 陆地棉主要农艺性状的相关性及聚类分析. 中国农学通报, 2015, 31(12): 139-144.
doi: 10.11924/j.issn.1000-6850.casb14120107
Dai M H, Liu L Y, Zheng S H, Wang R Q, Wu Z L. Correlation and cluster analysis for main agronomic characters of upland cotton. Chin Agric Sci Bull, 2015, 31(12): 139-144. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb14120107
[9] 韩祥铭, 刘英欣. 陆地棉产量性状的遗传分析. 作物学报, 2002, 28: 533-536.
Han X M, Liu Y X. Genetic analysis for yield and its components in upland cotton. Acta Agron Sin, 2002, 28: 533-536. (in Chinese with English abstract)
[10] 郭介华, 邹礼平. 陆地棉12个农艺性状的基因效应估计. 棉花学报, 1994, 6: 160-162.
Guo J H, Zou L P. Gene effect estimation of 12 agronomic traits in upland cotton. Cotton Sci, 1994, 6: 160-162. (in Chinese with English abstract)
[11] 马藩之, 周有耀, 王瑞亭, 刘占国. 陆地棉品种间杂交后代性状的遗传分析. 北京农业大学学报, 1983, 9(4): 27-34.
Ma F Z, Zhou Y Y, Wang R T, Liu C G. Genetic analysis of the characters among progenies between varietal cross of upland cotton, Gossypium hirsutum L. J Beijing Agric Univ, 1983, 9(4): 27-34. (in Chinese with English abstract)
[12] 孙济中, 刘金兰, 张金发. 棉花杂种优势的研究和利用. 棉花学报, 1994, 6: 135-139.
Sun J Z, Liu J L, Zhang J F. A review on research and utilization of hybrid vigor of cotton. Cotton Sci, 1994, 6: 135-139. (in Chinese with English abstract)
[13] Roy U, Paloti M C, Tigga A, Patil R S. Genetic variability studies in the F2 populations of interspecific cotton (G. hirsutum L. × G. barbadense L.) hybrids. Int J Genet, 2019, 11: 660-663.
[14] 吴吉祥, 朱军, 许馥华, 季道藩. 陆地棉F2产量性状杂种优势的遗传分析及其预测. 北京农业大学学报, 1993, 19(4): 95-99.
Wu J X, Zhu J, Xu F H, Ji D F. Genetic analysis and prediction of F2 heterosis of yield traits in Gossypium hirsutum L. J Beijing Agric Univ, 1993, 19(4): 95-99 (in Chinese with English abstract).
[15] 裴小雨, 周晓箭, 马雄风, 田桂平, 王海风, 孟清芹, 张文生, 周克海, 刘艳改, 杨代刚. 持续高温干旱年份陆地棉农艺和产量性状的遗传效应分析. 棉花学报, 2015, 27: 126-134.
doi: 10.11963/issn.1002-7807.201502005
Pei X Y, Zhou X J, Ma X F, Tian G P, Wang H F, Meng Q Q, Zhang W S, Zhou K H, Liu Y G, Yang D G. Genetic analysis of agronomic and yield traits of upland cotton under continuous high temperature and drought. Cotton Sci, 2015, 27: 126-134. (in Chinese with English abstract)
doi: 10.11963/issn.1002-7807.201502005
[16] Zhu J. Analysis of conditional genetic effects and variance components in developmental. Genetics, 1995, 141: 1633-1639.
doi: 10.1093/genetics/141.4.1633 pmid: 8601500
[17] 袁志发, 周静宇, 郭满才, 雷雪芹, 解小莉. 决策系数——通径分析中的决策指标. 西北农林科技大学学报(自然科学版), 2001, 29(5): 131-133.
Yuan Z F, Zhou J Y, Guo M C, Lei X Q, Xie X L. Decision coefficient: the decision index of path analysis. J Northwest A&F (Nat Sci Edn), 2001, 29(5): 131-133 (in Chinese with English abstract)
[18] 梅拥军, 朱军, 张利莉, 郭伟锋, 胡守林. 陆地棉产量组分对主要纤维品质性状的贡献分析. 中国农业科学, 2006, 39: 848-854.
Mei Y J, Zhu J, Zhang L L, Guo W F, Hu S L. Analysis on contribution of yield components to main fiber traits in upland cotton (Gossypum hirsutum L.). Sci Agric Sin, 2006, 39: 848-854. (in Chinese with English abstract)
[19] Mei Y J, Guo W F, Fan S L, Song M Z, Pang C Y, Yu S X. Analysis of decision-making coefficients of the lint yield of upland cotton (Gossypium hirsutum L.). Euphytica, 2014, 196: 95-104.
[20] 梅拥军, 郭伟锋, 熊仁次. 陆地棉产量组分对皮棉产量的遗传贡献分析. 棉花学报, 2007, 19: 114-118.
Mei Y J, Guo W F, Xiong R C. Analysis on genetic contribution of yield components to lint yield in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2007, 19: 114-118. (in Chinese with English abstract)
[21] 张文英, 梅拥军. 陆地棉F1单株成铃数遗传决策系数分析. 湖北农学院学报, 2004, 24: 6-10.
Zhang W Y, Mei Y J. Genetic decision-making coefficient analysis on the boll number per plant of upland cotton F1. J Hubei Agric Univ, 2004, 24: 6-10. (in Chinese with English abstract)
[22] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类. 作物学报, 2023, 49: 608-621.
doi: 10.3724/SP.J.1006.2023.24008
Guo H, Yu J W, Pei W F, Guan Y H, Li H, Li C X, Liu J W, Wang W, Wang B Q, Mei Y J. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang. Acta Agron Sin, 2023, 49: 608-621. (in Chinese with English abstract)
[23] 黄利兴, 李清华, 林玲娜, 张以华, 雷上平, 王侯聪, 游年顺, 梁康迳. 籼型杂交晚稻稻米品质性状的遗传效应分析. 福建农林大学学报(自然科学版), 2006, 35: 225-231.
Huang L X, Li Q H, Lin L N, Zhang Y H, Lei S P, Wang H C, You N S, Liang K J. Analysis of genetic effects for grain quality characters in late indica hybrid rice. J Fujian Agric For Univ (Nat Sci Edn), 2006, 35: 225-231. (in Chinese with English abstract)
[24] 叶子弘, 朱军. 陆地棉开花成铃性状的遗传研究: III.不同发育阶段的遗传规律. 遗传学报, 2000, 27: 800-809.
Ye Z H, Zhu J. Genetic analysis on flowering and boll setting in upland cotton: III. Genetic behavior at different developing stages. Acta Genet Sin, 2000, 27: 800-809 (in Chinese with English abstract).
[25] Zhu J. Mixed model approaches for estimating genetic variances and covariances. J Biomath, 1992, 1: 1-11.
[26] 朱军. 一般遗传模型和定量特征的新分析方法. 浙江农业大学学报, 1994, 20: 551-559.
Zhu J. General genetic models and new analysis methods for quantitative characteristics. J Zhejiang Agric Univ, 1994, 20: 551-559 (in Chinese with English abstract)
[27] 朱军. 遗传模型分析方法. 北京: 中国农业出版社, 1997. pp 56-87, 175-191.
Zhu J. Analysis Methods for Genetic Models. Beijing: China Agriculture Press, 1997. pp 56-87, 175-191. (in Chinese)
[28] 赵朝森, 赵现伟, 孙丽萍, 厉苏宁, 郭兵福, 王瑞珍. 不同来源大豆种质资源的田间鉴定与筛选. 西北农业学报, 2021, 30: 1638-1647.
Zhao C S, Zhao X W, Sun L P, Li S N, Guo B F, Wang R Z. Field identification and selection of excellent soybean germplasm resources from different origins. Acta Agric Boreali-Occident Sin, 2021, 30: 1638-1647. (in Chinese with English abstract)
[29] 李慧琴, 于娅, 王鹏, 刘记, 胡伟, 鲁丽丽, 秦文强. 270份陆地棉种质资源农艺性状与品质性状的遗传多样性分析. 植物遗传资源学报, 2019, 20: 903-910.
doi: 10.13430/j.cnki.jpgr.20181025003
Li H Q, Yu Y, Wang P, Liu J, Hu W, Lu L L, Qin W Q. Genetic diversity analysis of the main agronomic and fiber quality characteristics in 270 upland cotton germplasm resources. J Plant Genet Resour, 2019, 20: 903-910 (in Chinese with English abstract).
[30] 王海涛, 李兴河, 蔡肖, 唐丽媛, 张素君, 刘存敬, 张香云, 张建宏. 314份陆地棉种质资源农艺性状与品质性状的遗传多样性分析. 山东农业科学, 2022, 54(5): 16-23.
Wang H T, Li X H, Cai X, Tang L Y, Zhang S J, Liu C J, Zhang X Y, Zhang J H. Genetic diversity analysis of agronomy and fiber quality characters in 314 upland cotton germplasm resources. Shandong Agric Sci, 2022, 54(5): 16-23. (in Chinese with English abstract)
[31] 王忠军, 陈爱民, 王沛政, 阿不来提, 胡保明. 陆地棉主要经济性状的配合力和遗传力分析. 新疆农业大学学报, 1999, 22: 71-74.
Wang Z J, Chen A M, Wang P Z, Abulaiti, Hu B M. Analysis on the combining ability and genetic ability of mainly economic characters of upland cotton. J Xinjiang Agric Univ, 1999, 22: 71-74. (in Chinese with English abstract)
[32] 朱建东. 中、早熟陆地棉与海岛棉杂交种主要性状遗传效应比较分析. 河南科技学院硕士学位论文, 河南新乡, 2013.
Zhu J D. The Comparative Analysis of Genetic Effects of Main Characters of Medium-early Upland Cotton × Island Cotton. MS Thesis of Henan University of Science and Technology, Xinxiang, Henan, China, 2013. (in Chinese with English abstract)
[33] 梅拥军, 张改生, 叶子弘, 曹新川. 海岛棉零式果枝与长果枝品种间杂交F1目标产量性状的决策分析. 作物学报, 2004, 30: 1164-1168.
Mei Y J, Zhang G S, Ye Z H, Cao X C. The decision analysis on the aim yield traits of F1 between “0” and “Long fruit branch” plant type in island cotton. Acta Agron Sin, 2004, 30: 1164-1168. (in Chinese with English abstract)
[34] 郭伟锋, 曹新川, 胡守林, 梅拥军. 陆地棉杂交F1产量性状的决策分析. 江西棉花, 2009, 31(1): 20-23.
Guo W F, Cao X C, Hu S L, Mei Y J. The decision analysis on the aim yield traits of F1 between middle and early varieties in upland cotton. Jiangxi Cotton, 2009, 31(1): 20-23. (in Chinese with English abstract)
[35] 程启红. 五个强优势陆地棉杂交种的优势比较. 华中农业大学硕士学位论文,湖北武汉, 2010.
Cheng Q H. Heterosis Comparison in Five Hybrids of Strong Upland Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2010. (in Chinese with English abstract)
[1] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[2] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[3] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[4] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[5] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[6] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[7] LOU Shan-Wei, GAO Fei, WANG Chong, TIAN Xiao-Li, DU Ming-Wei, DUAN Liu-Sheng. Screening of different dropping formulations about mepiquat chloride and their effects on cotton growth and development [J]. Acta Agronomica Sinica, 2023, 49(2): 552-560.
[8] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[9] LI Ying, LIU Hai-Cui, SHI Lyu, SHI Xiao-Xu, HAN Xiao, LIU Jian, WEI Ya-Feng. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province [J]. Acta Agronomica Sinica, 2023, 49(10): 2687-2697.
[10] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[11] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[12] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[13] TIAN Hong-Li, ZHAO Zi-Wei, YANG Yang, FAN Ya-Ming, BAN Xiu-Li, YI Hong-Mei, YANG Hong-Ming, LIU Shao-Rong, GAO Yu-Qian, LIU Ya-Wei, WANG Feng-Ge. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China [J]. Acta Agronomica Sinica, 2022, 48(12): 2994-3003.
[14] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[15] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .