Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 247-259.doi: 10.3724/SP.J.1006.2025.44044

• RESEARCH NOTES • Previous Articles     Next Articles

Response of transcription factor StFBH3 under abiotic stress in potato

SONG Qian-Na1,2(), SONG Hui-Yang1, LI Jing-Hao1, DUAN Yong-Hong1, MEI Chao1,2, FENG Rui-Yun1,2,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2024-03-07 Accepted:2024-09-18 Online:2025-01-12 Published:2024-09-23
  • Contact: *E-mail: fengruiyun1970@163.com
  • Supported by:
    Doctoral Fund of Institute of Crop Science, Shanxi Academy of Agricultural Sciences(ZB1102);Doctoral Fund of Shanxi Agricultural University(2021BQ44);Doctoral Award Fund Research Project of Shanxi Province(SXBYKY2021084);Basic Research Foundation of Shanxi Province(202203021211272);Breeding Engineering Special Project of College of Agriculture, Shanxi Agricultural University(YZ2021-04)

Abstract:

The basic helix-loop-helix (bHLH) transcription factor family is the second largest family of transcription factors and plays a central regulatory role in enabling plants to defend against environmental stress. Investigating the function of bHLH family genes in potato can provide a theoretical foundation for potato improvement and breeding. In this study, the StFBH3 gene was cloned, and its tissue-specific expression patterns under different stress treatments were analyzed using qPCR. The relative expression level of StFBH3 was highest in potato roots and leaves, and its expression was induced by osmotic stress, high salinity, and abscisic acid (ABA) treatment. On MS medium containing various concentrations of mannitol, NaCl, and ABA, the chlorophyll content in the StFBH3 overexpressing potato lines was significantly higher than that of the wild type, and the root length was notably longer. Under drought and high salinity conditions, the StFBH3 overexpressing lines cultivated in soil exhibited stronger tolerance compared to the wild type, with significantly higher leaf relative water content, chlorophyll content, and superoxide dismutase (SOD) enzyme activity. Furthermore, qPCR analysis revealed that the expression levels of drought- and salt stress-related genes, such as KAT1, were significantly reduced in the StFBH3overexpressing lines compared to the wild type. These results suggest that StFBH3 functions as a positive regulator, induced and specifically expressed in response to osmotic stress, drought, and high salinity. This study provides an important reference for further analysis of the biological function of the StFBH3 gene in potato.

Key words: potato, StFBH3, transcription factor, adversity stress

Table 1

Primers used in this study"

引物名称
Prime name
引物序列
Primer sequence (5'-3')
StFBH3-F ATGGATTCATCAGAGTTTGAG
StFBH3-R TTTGCAGTTAGCGCGACAGTCA
HYG-F GATCGGACGATTGCGTCGCAT
HYG-R CGTGGATATGTCCTGCGGGTAA
qStFBH3-F GTGGGTACAGGGTGATGGGG
qStFBH3-R CTCCAGCACCTTTCAAC
qStKAT1-F GGATCTGCTTTTCCAACTGGTTC
qStKAT1-R CGAGCAACAGCCTTCCCAAT
Actin-F ATTGGAAACGGATATGCTCCA
Actin-R TCCTTACCTGAACGCCTGTCA

Fig. 1

Sequence analysis of StFBH3 A: multiple sequence alignment of amino acid sequence. The positions of C1, C2, and C3 conserved domains are indicated by black lines. Consensus phosphorylation sites are indicated by the black boxes. B: analysis of the evolutionary tree. The 0.1 scale bar indicates the number of amino acid substitution per site. C: protein tertiary structure prediction. D: conserved domain analysis."

Fig. 2

Relative transcript level of StFBH3 under different potato tissues and abiotic stress A: relative expression of StFBH3 in different tissues; B-D: relative expression of StFBH3 after high salt, dehydration and ABA treatments. * indicates a significant difference at the 0.05 probability level."

Fig. 3

Chlorophyll content of overexpression potato lines under different concentrations of mannitol and NaCl A and C: phenotypic of overexpression potato lines and WT plants under different mannitol and NaCl concentrations; B and D: chlorophyll content of overexpression potato lines and WT plants under different mannitol and NaCl concentrations. ** indicates a significant difference at the 0.01 probability level."

Fig. 4

Rooting rate, root length and numbers of roots of overexpression potato lines under NaCl and mannitol treatments A-B: morphology of potato lines under 100 mmol L-1 NaCl and 350 mmol L-1 mannitol; C-E: rooting rate, the main root length and root numbers of potato lines under 100 mmol L-1 NaCl and 350 mmol L-1 mannitol. Bar: 1.0 cm; ** indicates a significant difference at the 0.01 probability level."

Fig. 5

Rooting rate, root length and numbers of roots of overexpression potato lines on ABA and mannitol A: morphology of potato lines under 100 µmol L-1 ABA; B: morphology of potato lines under 50 µmol L-1 ABA and 350 mmol L-1 mannitol; C-E: rooting rate, the main root length and root numbers of potato lines under two conditions. Bar: 1.0 cm; ** indicates a significant difference at the 0.01 probability level."

Fig. 6

Phenotypes of StFBH3-OE potato lines under drought stress in soil A: the phenotype of potato; B: length above of potato under drought stress; C: percentage of relative water contents in potato under drought stress; D: percentage of chlorophyll contents in potato under drought stress; E: SOD activity of potato under drought stress. Bar: 1.0 cm; ** indicates a significant difference at the 0.01 probability level."

Fig. 7

Phenotypes of StFBH3-OE potato lines under salt stress in soil A: the phenotype of potato; B: length above of potato under salt stress; C: percentage of relative water contents in potato under salt stress; D: percentage of chlorophyll contents in potato under salt stress; E: SOD activity of potato under salt stress. Bar: 1.0 cm; ** indicates a significant difference at the 0.01 probability level."

Fig. 8

Relative expression analysis of the stress-induced genes in StFBH3-OE and WT potatoes under drought and salt treatment ** indicates a significant difference at the 0.01 probability level."

Table 2

Micro-tuber fresh weight per plant of overexpression potato lines under 50 mmol L-1 NaCl (mg)"

样本
Groups
每株平均试管薯鲜重Micro-tuber per plant
0 mmol L-1 NaCl 50 mmol L-1 NaCl
CK 34.68 ± 14.86 a 11.50 ± 7.80 a
OE-1 48.65 ± 27.35 a 21.23 ± 6.92 a
OE-2 35.00 ± 12.02 a 13.16 ± 1.46 a
OE-3 38.44 ± 9.75 a 18.35 ± 16.73 a
[1] 张冠初, 张智猛, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 田家明, 戴良香. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响. 华北农学报, 2018, 33(3): 176-181.
Zhang G C, Zhang Z M, Ci D W, Ding H, Yang J S, Shi X L, Tian J M, Dai L X. Effects of drought and salt stress on osmotic regulator and antioxidase activities. Acta Agric Boreali-Sin, 2018, 33(3): 176-181 (in Chinese with English abstract).
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
[3] Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
[4] 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, 42(7): 4-16.
Qiu H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issues Agric Econ, 2021, 42(7): 4-16 (in Chinese with English abstract).
[5] 张雪莹, 刘欣. 转录因子与叶片发育的研究进展. 植物生理学报, 2022, 58: 91-100.
Zhang X Y, Liu X. Research progress of transcription factors and leaf development. Plant Physiol J, 2022, 58: 91-100 (in Chinese with English abstract).
[6] Balazadeh S, Riaño-Pachón D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Cell, 2008, 10: 63-75.
[7] Ng D W, Abeysinghe J K, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci, 2018, 19: 3737.
[8] Kong Q, Pattanaik S, Feller A, Werkman J R, Chai C L, Wang Y Q, Grotewold E, Yuan L. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci USA, 2012, 109: E2091-E2097.
[9] Pires N, Dolan L. Origin and diversification of basic-helix-loop- helix proteins in plants. Mol Biol Evol, 2010, 27: 862-874.
[10] Filiz E, Vatansever R, Ozyigit I I. Dissecting a co-expression network of basic helix-loop-helix (bHLH) genes from phosphate (Pi)-starved soybean (Glycine max). Plant Gene, 2017, 9: 19-25.
[11] Murre C, Bain G, van Dijk M A, Engel I, Furnari B A, Massari M E, Matthews J R, Quong M W, Rivera R R, Stuiver M H. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta, 1994, 1218: 129-135.
[12] Zhang Z S, Chen J, Liang C L, Liu F, Hou X L, Zou X X. Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.). Front Genet, 2020, 11: 570156.
[13] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161gene in maize. Acta Agron Sin, 2020, 46: 2008-2016 (in Chinese with English abstract).
[14] Li X X, Duan X P, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y, Ma H, Wang J, Zhang D B. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Cell, 2006, 141: 1167-1184.
[15] Tian S Y, Li L J, Wei M, Yang F J. Genome-wide analysis of basic helix-loop-helix superfamily members related to anthocyanin biosynthesis in eggplant (Solanum melongena L.). PeerJ, 2019, 7: e7768.
[16] 冯建英, 李立芹, 鲁黎明. 马铃薯bHLH转录因子家族全基因组鉴定与表达分析. 生物技术通报, 2022, 38(2): 21-33.
Feng J Y, Li L Q, Lu L M. Genome-wide identification and expression analysis of the bHLH transcription factor family in Solanum tuberosum. Plant Cell, 2022, 38(2): 21-33 (in Chinese with English abstract).
[17] Daie J. Annual review of plant physiology and plant molecular biology. Soil Sci, 1992, 154: 508.
[18] Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Plant Cell, 2017, 160: 312-327.
[19] Zhao Q, Fan Z H, Qiu L N, Che Q Q, Wang T, Li Y Y, Wang Y Z. MdbHLH130, an apple bHLH transcription factor, confers water stress resistance by regulating stomatal closure and ROS homeostasis in transgenic tobacco. Front Plant Sci, 2020, 11: 543696.
[20] Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. Plant Cell, 2009, 166: 1296-1306.
[21] Busk P K, Pagès M. Regulation of abscisic acid-induced transcription. Plant Mol Biol, 1998, 37: 425-435.
[22] Suzuki M, Ketterling M G, Li Q B, McCarty D R. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol, 2003, 132: 1664-1677.
[23] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470-3488.
[24] Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA, 1999, 96: 15348-15353.
[25] Casaretto J, Ho T H D. The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell, 2003, 15: 271-284.
[26] Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006, 103: 1988-1993.
[27] Takahashi Y, Kinoshita T, Matsumoto M, Shimazaki K. Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation. Plant J, 2016, 87: 559-567.
[28] Halterman D, Guenthner J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato Res, 2016, 93: 1-20.
[29] Suttle J. Symposium introduction:enhancing the nutritional value of potato tubers. Am J Potato Res, 2008, 85: 266.
[30] Liu F L, Shahnazari A, Andersen M N, Jacobsen S E, Jensen C R. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J Exp Bot, 2006, 57: 3727-3735.
[31] Muñiz García M N, Cortelezzi J I, Fumagalli M, Capiati D A. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. Plant Mol Biol, 2018, 98: 137-152.
[32] Muñiz García M N, Giammaria V, Grandellis C, Téllez-Iñón M T, Ulloa R M, Capiati D A. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta, 2012, 235: 761-778.
[33] Bai J P, Mao J, Yang H Y, Khan A, Fan A Q, Liu S Y, Zhang J L, Wang D, Gao H J, Zhang J L. Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genet, 2017, 18: 41.
[34] 刘维刚, 唐勋, 付学, 张欢欢, 朱存兰, 张宁, 司怀军. 马铃薯抗旱性研究进展. 中国马铃薯, 2022, 36: 358-369.
Liu W G, Tang X, Fu X, Zhang H H, Zhu C L, Zhang N, Si H J. Research progress in drought tolerance of potato. Chin Potato J, 2022, 36: 358-369 (in Chinese with English abstract).
[35] Bouaziz D, Ayadi M, Bidani A, Rouis S, Nouri-Ellouz O, Jellouli R, Drira N, Gargouri-Bouzid R. A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Sci, 2009, 176: 489-496.
[36] Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol, 2013, 54: 803-817.
[37] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116.
[38] Li H M, Sun J Q, Xu Y X, Jiang H L, Wu X Y, Li C Y. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Cell, 2007, 65: 655-665.
[39] Yang T R, Yao S F, Hao L, Zhao Y Y, Lu W J, Xiao K. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep, 2016, 35: 2309-2323.
[40] Jiang Y Q, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009, 282: 503-516.
[41] Liu Y J, Ji X Y, Nie X G, Qu M, Zheng L, Tan Z L, Zhao H M, Huo L, Liu S N, Zhang B, Wang Y C. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207: 692-709.
[42] Khampheng B, 沈镭, 钟帅, 孙艳芝, 杨慧芹. 脯氨酸引发提高烟草种子和幼苗抗逆性及其与抗氧化系统的关系. 山西农业科学, 2019, 47(1): 39-48.
Khampheng B, Shen L, Zhong S, Sun Y Z, Yang H Q. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming. J Shanxi Agric Sci, 2019, 47(1): 39-48 (in Chinese with English abstract).
[43] Ji X Y, Nie X G, Liu Y J, Zheng L, Zhao H M, Zhang B, Huo L, Wang Y C. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol, 2016, 36: 193-207.
[1] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotao [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[2] GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133.
[3] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[6] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[7] ZHOU Hong-Yuan, YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling. Screening and functional identification of chlorogenic acid regulatory factors in potato [J]. Acta Agronomica Sinica, 2024, 50(7): 1740-1749.
[8] LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393.
[9] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[10] SUN Yi-Ming, TIAN Xia, WANG Shao-Xia, LIU Qing. Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1608-1615.
[11] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[12] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[13] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[14] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[15] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .