Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 324-333.doi: 10.3724/SP.J.1006.2025.44114

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic and QTL mapping analysis of oil content in peanut across multiple environments

HU Peng-Ju1(), GUO Song1,2, SONG Ya-Hui1, JIN Xin-Xin1, SU Qiao1, YANG Yong-Qing1,*(), WANG Jin1,*()   

  1. 1Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
    2College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2024-07-17 Accepted:2024-10-25 Online:2025-02-12 Published:2024-11-11
  • Contact: E-mail: wangjinnky@163.com; E-mail: yyq287346@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Modern Agricultural Industrial Technology System of Hebei Province(HBCT2024040101);Modern Agricultural Industrial Technology System of Hebei Province(HBCT2024040204);Special Project of Modern Seed Industry Science and Technology Innovation in Hebei Province(21326316D);Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences(2024060206)

Abstract:

High oil content is a crucial trait for breeding high-quality peanut varieties. Understanding the genetic mechanisms underlying peanut oil content across multiple environments and identifying valuable genetic loci that enhance oil content would provide a strong foundation for developing high-oil peanut cultivars. In this study, a recombinant inbred line (RIL) population, derived from Jihua 5 and Kaixuan01-6, was used for genetic dissection and QTL mapping of oil content across six environments. The results showed that the absolute values of skewness and kurtosis for oil content in the RIL population across the six environments were less than 1, and the broad-sense heritability was 0.799. A total of 18 QTLs were identified, with LOD scores ranging from 13.62 to 22.58, accounting for 3.18% to 14.83% of the phenotypic variation. Notably, qOC_8-1 emerged as the most stable and major QTL, with the increasing allele contributed by Jihua 6. Joint QTL analysis across multiple environments revealed 11 QTLs associated with oil content, with LOD scores ranging from 5.59 to 16.87, explaining 2.32% to 7.69% of the phenotypic variation. Among these, seven additive alleles were derived from Jihua 6, while four were from Kaixuan01-6. Additionally, nine pairs of epistatic QTLs involving 13 loci were detected, with LOD scores ranging from 8.54 to 10.90, contributing to 1.91% to 2.55% of the phenotypic variation. In conclusion, these results indicate that peanut oil content is regulated by multiple genetic loci, with interaction effects between different loci. qOC_8-1 is a particularly valuable QTL for breeding high-oil peanut cultivars. This study provides valuable insights for future precision molecular breeding efforts targeting oil content improvement.

Key words: peanut, oil content, recombinant inbred line, multiple environments, QTL

Table 1

Genetic analysis of oil content in RIL populations under multiple environments"

环境
Environment
亲本 Parents RIL群体 RIL population 遗传力
h2b
冀花6号
Jihua 6
开选01-6
Kaixuan01-6
平均值
Mean
变异率
CV (%)
偏度
Skew
峰度
Kurt
最大值
Max.
最小值
Min.
2021堤上2021_DS 48.90 46.50 49.55±2.06 3.87 -0.02 -0.54 53.63 45.11 0.799
2021农场2021_NC 54.69 52.60 55.12±1.97 3.28 -0.14 -0.51 58.95 51.07
2020堤上2020_DS 52.80 50.93 51.90±2.20 4.22 0.24 -0.43 57.56 47.20
2020农场2020_NC 55.63 54.73 54.88±1.98 3.35 0.01 -0.51 59.24 50.47
2019堤上2019_DS 49.12 46.59 48.39±2.30 3.85 0.07 -0.52 52.77 44.36
2019农场2019_NC 50.65 44.02 50.06±1.87 4.22 0.10 -0.32 55.82 45.19

Fig. 1

Differential analysis of the RIL population across multiple environments 2019_DS, 2019_NC, 2020_DS, 2020_NC, 2021_DS, and 2021_NC represent environments of year 2019 in Dishang, year 2019 in Nongchang, year 2020 in Dishang, year 2020 in Nongchang, year 2021 in Dishang and year 2021 in Nongchang, respectively. Different letters over the boxplot indicate significant difference at the 5% probability level."

Table 2

QTLs associated with the oil content trait detected in individual environments"

QTL 环境
Environment
染色体
Chromosome
遗传位置
Genetic
position (cM)
标记区间
Marker interval
LOD 表型贡献率
Phenotype variation
explained (%)
加性效应
Add
qOC_1 2019农场2019_NC A01 99 Chr.1_17041112-Chr.1_39587773 3.73 5.23 0.56
qOC_5-1 2020堤上2020_DS A05 59 Chr.5_92369574-aChr.5_92314561 6.20 6.13 0.62
qOC_5-2 2020堤上2020_DS A05 65 Chr.5_88602874-Chr.5_87333440 13.62 14.83 -0.97
qOC_5-3 2019堤上2019_DS A05 38 Chr.5_112588877-Chr.5_103400905 3.40 5.25 0.43
qOC_6 2021堤上2021_DS A06 194 Chr.6_115036230-Chr.6_113418598 6.50 9.82 -0.62
2020堤上2020_DS A06 196 Chr.6_113418598-Chr.6_110554561 6.42 6.79 -0.72
qOC_7 2021堤上2021_DS A07 52 Chr.7_11165495-Chr.7_11024783 2.58 3.80 -0.36
qOC_8-1 2021堤上2021_DS A08 82 Chr.8_43017160-aChr.8_43769761 6.92 10.89 0.61
2021农场2021_NC A08 90 Chr.8_45318531-Chr.8_46776535 4.28 9.98 0.81
2019堤上2019_DS A08 86 Chr.8_44595184-Chr.8_44888621 6.58 10.63 0.61
qOC_8-2 2021堤上2021_DS A08 70 Chr.8_38175606-Chr.8_39187496 7.33 11.12 0.62
2020堤上2020_DS A08 72 Chr.8_39187496-Chr.8_39946631 7.05 7.11 0.69
qOC_15 2021堤上2021_DS B05 0 Chr.15_154162543-Chr.15_154040139 4.30 6.19 0.46
2020堤上2020_DS B05 5 Chr.15_153256665-Chr.15_152999090 3.22 3.18 0.45
qOC_16-1 2020农场2020_NC B06 89 Chr.16_145058362-Chr.16_143948913 2.88 7.41 -0.57
2019堤上2019_DS B06 92 Chr.16_143683426-Chr.16_143129559 8.44 14.12 -0.77
qOC_16-2 2019农场2019_NC B06 135 Chr.16_14299433-Chr.16_13661776 2.97 4.11 -0.50
qOC_18 2019农场2019_NC B08 8 Chr.18_115185289-Chr.18_19854766 5.41 8.16 0.72
qOC_19 2021堤上2021_DS B09 66 Chr.19_156823676-Chr.19_156972327 2.83 4.06 0.37

Fig. 2

QTLs associated with the oil content traits detected in individual environments"

Table 3

Additive QTL × the environment interaction effects for the oil content traits in RIL population"

QTL 染色体
Chromosome
遗传位置
Genetic position (cM)
标记区间
Marker interval
LOD 表型贡献率
PVE (%)
表型贡献率
PVE (%)
加性效应
Add
QTL与环境互作效应
Interaction effect between additive QTL and environment
A (%) AE (%) AE1 AE2 AE3 AE4 AE5 AE6
qOC_5-1 A05 59 Chr.5_92369574-aChr.5_92314561 7.43 3.10 0.08 3.02 0.05 −0.02 −0.25 0.59 −0.16 −0.18 0.01
qOC_5-2 A05 65 Chr.5_88602874-Chr.5_87333440 16.87 7.69 3.69 4.00 −0.31 0.26 0.03 −0.66 0.04 −0.01 0.34
qOC_6 A06 195 Chr.6_113418598-Chr.6_110554561 11.97 4.12 2.17 1.95 −0.26 −0.34 0.20 −0.34 0.26 0.07 0.15
qOC_8-1 A08 71 Chr.8_39187496-Chr.8_39946631 15.01 5.31 3.48 1.83 0.31 0.28 −0.18 0.32 −0.08 −0.26 −0.09
qOC_8-2 A08 82 Chr.8_43017160-aChr.8_43769761 8.41 2.78 1.41 1.37 0.19 0.38 −0.20 −0.05 0.08 −0.07 −0.14
qOC_8-3 A08 92 Chr.8_45318531-Chr.8_46776535 6.62 4.57 2.72 1.86 0.27 −0.10 0.47 −0.18 0.05 −0.05 −0.17
qOCm_9 A09 160 Chr.9_114373329-Chr.9_114634199 5.65 2.32 1.75 0.57 0.21 −0.08 −0.13 −0.06 0.21 −0.07 0.12
qOC_15 B05 0 Chr.15_154162543-Chr.15_154040139 8.01 3.10 1.88 1.22 0.22 0.24 −0.15 −0.26 0.04 0.20 −0.06
qOC_16-1 B06 93 Chr.16_143683426-Chr.16_143129559 8.87 3.16 0.85 2.31 −0.16 0.17 0.16 0.18 0.10 −0.03 −0.58
qOC_16-2 B06 134 Chr.16_14299433-Chr.16_13661776 6.18 3.01 0.49 2.52 −0.11 0.07 0.42 0.11 0.00 −0.39 −0.21
qOC_18 B08 8 Chr.18_115185289-Chr.18_19854766 7.13 3.45 1.60 1.85 0.21 −0.23 −0.09 −0.18 0.02 0.45 0.03

Fig. 3

Additive QTL × the environment interaction effects for oil content traits in the RIL population across six environments The QTL with black and red color mean QTL detected in multiple and both environments, respectively."

Table 4

Epistatic QTL analysis of RIL population oil content in multiple environments"

染色体
Chr.
遗传位置
Genetic Position
(cM)
标记区间
Marker interval
染色体
Chr.
遗传位置
Genetic position (cM)
标记区间
Marker interval
LOD值
LOD
表型贡献率
PVE (%)
加性效应1
Add 1
加性效应2
Add 2
加性互作效应
Add by Add
1 0 Chr.1_87382263-Chr.1_110960817 6 25 Chr.6_1190858-Chr.6_6246195 8.54 2.13 −0.03 −0.01 0.26
4 0 Chr.4_5980447-Chr.4_6698877 7 85 Chr.7_3548350-Chr.7_3251821 10.38 2.55 −0.08 −0.03 −0.34
2 45 Chr.2_93214445-Chr.2_93495419 7 95 Chr.7_2736399-Chr.7_2188838 8.63 1.99 0.12 −0.08 −0.30
3 45 Chr.3_132570564-Chr.3_132141869 8 60 Chr.8_31990696-Chr.8_33619353 8.99 2.21 −0.04 0.05 −0.30
9 5 Chr.9_6070868-Chr.9_10503227 9 145 Chr.9_102356800-Chr.9_109637955 10.90 2.50 0.03 0.09 −0.32
2 95 Chr.2_100757247-Chr.2_100589540 15 120 Chr.15_21457049-Chr.15_151853254 8.61 1.91 0.00 −0.14 0.28
15 25 Chr.15_148032512-Chr.15_141399285 16 105 Chr.16_136604513-Chr.16_136397773 9.22 2.47 0.10 −0.08 −0.34
7 90 Chr.7_2902588-Chr.7_2736399 17 80 Chr.17_4590413-Chr.17_10433190 8.91 2.35 −0.14 0.08 −0.30
9 145 Chr.9_102356800-Chr.9_109637955 19 15 Chr.19_14174336-Chr.19_14628592 9.73 2.53 0.07 0.02 −0.30

Fig. 4

Epistatic QTL analysis of RIL population oil content in multiple environments"

[1] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837.
[2] 姜慧芳, 任小平, 王圣玉, 黄家权, 雷永, 廖伯寿. 野生花生高油基因资源的发掘与鉴定. 中国油料作物学报, 2010, 32: 30-34.
Jiang H F, Ren X P, Wang S Y, Huang J Q, Lei Y, Liao B S. Identification and evaluation of high oil content in wild Arachis species. Chin J Oil Crop Sci, 2010, 32: 30-34 (in Chinese with English abstract).
[3] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 999-1004.
doi: 10.3724/SP.J.1006.2008.00999
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999-1004 (in Chinese with English abstract).
[4] 李新平, 徐志军, 蔡岩, 郭建斌, 黄莉, 任小平, 李振动, 陈伟刚, 罗怀勇, 周小静, 陈玉宁, 吴明煜, 姜慧芳. 花生主要品质性状的QTL定位分析. 中国油料作物学报, 2016, 38: 415-422.
Li X P, Xu Z J, Cai Y, Guo J B, Huang L, Ren X P, Li Z D, Chen W G, Luo H Y, Zhou X J, Chen Y N, Wu M Y, Jiang H F. Quantitative trait locus analysis for main quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2016, 38: 415-422 (in Chinese with English abstract).
[5] Wang Y H, Liu S J, Ji S L, Zhang W W, Wang C M, Jiang L, Wan J M. Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice. Cell Res, 2005, 15: 622-630.
pmid: 16117852
[6] 禹山林, 杨庆利, 潘丽娟, 薄文娜. 花生种子含油量的遗传分析. 植物遗传资源学报, 2009, 10: 453-456.
Yu S L, Yang Q L, Pan L J, Bo W N. Genetic analysis for oil content of peanut seeds. J Plant Genet Resour, 2009, 10: 453-456 (in Chinese with English abstract).
[7] 陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生. 花生含油量杂种优势表现及主基因+多基因遗传效应分析. 中国农业科学, 2009, 42: 3048-3057.
Chen S L, Li Y R, Cheng Z S, Liao B S, Lei Y, Liu J S. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Sci Agric Sin, 2009, 42: 3048-3057 (in Chinese with English abstract).
[8] 李坤, 司龙亭, 张克岩, 姜晶, 田友, 李丹丹. 黄瓜(Cucumis sativus L.)种子含油量性状的QTL定位与分析. 分子植物育种, 2011, 9: 198-203.
Li K, Si L T, Zhang K Y, Jiang J, Tian Y, Li D D. Mapping and analysis of QTL related to seed oil content trait in cucumber (Cucumis sativus L.). Mol Plant Breed, 2011, 9: 198-203 (in Chinese with English abstract).
[9] 李超, 李波, 曲存民, 阎星颖, 付福友, 刘列钊, 谌利, 李加纳. 两种环境下甘蓝型油菜含油量的差值QTL分析. 作物学报, 2011, 37: 249-254.
doi: 10.3724/SP.J.1006.2011.00249
Li C, Li B, Qu C M, Yan X Y, Fu F Y, Liu L Z, Chen L, Li J N. Analysis of difference QTLs for oil content between two environments in Brassica napus L. Acta Agron Sin, 2011, 37: 249-254 (in Chinese with English abstract).
[10] Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49-59.
[11] Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet, 2014, 15: 133.
[12] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
[13] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Ali Khan S, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution, and crop domestication. Nat Genet, 2019, 51: 865-876.
[14] 张胜忠, 胡晓辉, 苗华荣, 杨伟强, 崔凤高, 邱俊兰, 陈四龙, 张建成, 陈静. 栽培种花生含油量QTL定位与上位性互作分析. 华北农学报, 2021, 36(1): 27-35.
doi: 10.7668/hbnxb.20191533
Zhang S Z, Hu X H, Miao H R, Yang W Q, Cui F G, Qiu J L, Chen S L, Zhang J C, Chen J. QTL mapping and epistatic interaction analysis for oil content in cultivated peanut. Acta Agric Boreali-Sin, 2021, 36(1): 27-35 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191533
[15] Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5 pmid: 17985112
[16] Yang Y Q, Su Q, Li Y R, Cheng Z S, Song Y H, Jin X X, Wang J. Fine mapping of a major QTL qHYF_B06 for peanut yield. Crop J, 2023, 11: 1533-1540.
[17] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展. 作物学报, 2024, 50: 529-542.
doi: 10.3724/SP.J.1006.2024.34083
Zhang Y, Wang Z H, Huai D X, Liu N, Jiang H F, Liao B S, Lei Y. Research progress on genetic basis and QTL mapping of oil content in peanut seed. Acta Agron Sin, 2024, 50: 529-542 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34083
[18] 张昆. 光强对花生光合特性, 产量和品质的影响及生长模型研究. 山东农业大学博士学位论文, 山东泰安, 2009.
Zhang K.Influence of Shading on Photosynthetic Characteristics, Yield and Quality of Peanut and its Growth Model. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2009 (in Chinese with English abstract).
[19] 胡文广, 邱庆树, 李正超, 吴兰荣, 董杰.花生品质的影响因素研究: II. 栽培因素. 花生学报, 2002, 31(4): 14-18.
Hu W G, Qiu Q S, Li Z C, Wu L R, Dong J. Studies of the effect factors on peanut qualities: II. cultural factors. J Peanut Sci, 2002, 31(4): 14-18 (in Chinese with English abstract).
[20] 张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄冰艳. 花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34: 311-315.
Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2012, 34: 311-315 (in Chinese with English abstract).
[21] 卢会翔, 唐道彬, 吴正丹, 罗凯, 韩叙, 敬夫, 罗玉龙, 张晓勇, 张凯, 王季春. 甘薯产量、品质及农艺性状的基因型与环境效应研究. 中国生态农业学报, 2015, 23: 1158-1168.
Lu H X, Tang D B, Wu Z D, Luo K, Han X, Jing F, Luo Y L, Zhang X Y, Zhang K, Wang J C. Genotypic variation and environmental effects on yield, quality and agronomic traits of sweet potato. Chin J Eco-Agric, 2015, 23: 1158-1168 (in Chinese with English abstract).
[22] Hagiwara W E, Onishi K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27-35.
[23] Balakrishnan D, Surapaneni M, Yadavalli V R, Addanki K R, Mesapogu S, Beerelli K, Neelamraju S. Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC 81832 cross. Sci Rep, 2020, 10: 7766.
doi: 10.1038/s41598-020-64300-0 pmid: 32385410
[24] Cho Y B, Jones S I, Vodkin L O. Mutations in Argonaute5 illuminate epistatic interactions of the KI and I loci leading to saddle seed color patterns in Glycine max. Plant Cell 2017, 29: 708-725.
[25] 赵慧玲, 周希萌, 张鲲, 付春, 李长生, 李爱芹, 马长乐, 王兴军, 赵传志. 花生重要农艺性状QTL/基因定位研究进展. 花生学报, 2021, 50(1): 19-32.
Zhao H L, Zhou X M, Zhang K, Fu C, Li C S, Li A Q, Ma C L, Wang X J, Zhao C Z. Research progress on QTL/gene mapping of important agronomic traits of peanut. J Peanut Sci, 2021, 50(1): 19-32 (in Chinese with English abstract).
[26] 高斌, 李洪珍, 崔顺立, 郭丽果, 陈焕英, 穆国俊, 杨鑫雷, 刘立峰. 北方花生育成品种(系)分子标记鉴定及系谱分析. 植物遗传资源学报, 2019, 20: 1472-1485.
doi: 10.13430/j.cnki.jpgr.20181218003
Gao B, Li H Z, Cui S L, Guo L G, Chen H Y, Mu G J, Yang X L, Liu L F. Molecular marker identification and pedigree analysis for peanut cultivars(lines)in northern China. J Plant Genet Resour, 2019, 20: 1472-1485 (in Chinese with English abstract).
[27] 黎穗临. 狮头企亲缘花生品种系谱分析. 花生科技, 2000, 29(4): 5-10.
Li S L. The pedigree analysis of peanut varieties with the pedigree of Shitouqi. Peanut Sci Technol, 2000, 29(4): 5-10 (in Chinese with English abstract).
[28] Yang Y Q, Li Y R, Cheng Z S, Su Q, Jin X X, Song Y H, Wang J, Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theor Appl Genet, 2023, 136: 97-113.
doi: 10.1007/s00122-023-04328-8 pmid: 37027047
[1] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-695.
[2] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[3] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[4] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[5] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[6] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[7] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[8] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[9] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[10] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[11] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[12] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[13] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[14] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[15] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[2] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[3] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[4] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[5] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[6] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[7] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[8] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[9] WANG Jia-Yu;FAN Shu-Xiu;XU Zheng-Jin;CHEN Wen-Fu. Filling Properties of Grains on Different Positions in a Panicle of Rice with Different Panicle Types[J]. Acta Agron Sin, 2007, 33(08): 1366 -1371 .
[10] CHEN Guang-Yao;WANG Guo-Huai;LUO Feng;NIE Ming-Jian. Effects of Endogenous Hormones on Pre-harvest Sprouting in Siliqua of Rapeseed (Brassica napus L.)[J]. Acta Agron Sin, 2007, 33(08): 1324 -1328 .