Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1827-1837.doi: 10.3724/SP.J.1006.2025.43028
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Jian-Peng1(), WANG Guo-Rui3, BIE Hai2, YE Fei-Yu3, MA Chen-Chen3, LIANG Xiao-Han3, LU Xiao-Min3, SHANG Xiao-Li4,*(
), CAO Li-Ru3,*(
)
[1] | 杨丽萍, 李一荻, 丁晓月, 闵菲. 转录因子TCP调控植物生长发育的研究进展. 吉林师范大学学报(自然科学版), 2024, 45(1): 112-116. |
Yang L P, Li Y D, Ding X Y, Min F. Research progress on transcription factor TCP regulate plant growth and development. J Jilin Norm Univ (Nat Sci Edn), 2024, 45(1): 112-116 (in Chinese with English abstract). | |
[2] |
Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553-3558.
doi: 10.1002/j.1460-2075.1987.tb02684.x pmid: 3428265 |
[3] | Tian F, Yang D C, Meng Y Q, Jin J P, Gao G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res, 2020, 48: D1104-D1113. |
[4] | 郭凯, 侯留迪, 张莹莹, 周开明, 张丙林, 邹华文. 植物MYB基因家族研究进展. 长江大学学报(自然科学版), 2020, 17(6): 93-98. |
Guo K, Hou L D, Zhang Y Y, Zhou K M, Zhang B L, Zou H W. Research progress of MYB gene family in plants. J Yangtze Univ (Nat Sci Edn), 2020, 17(6): 93-98 (in Chinese with English abstract). | |
[5] | Liu R D, Shen Y H, Wang M X, Liu R H, Cui Z Q, Li P Z, Wu Q D, Shen Q, Chen J, Zhang S P, et al. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.). Plant Sci, 2023, 329: 111608. |
[6] | Lee S B, Kim H U, Suh M C. MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol, 2016, 57: 2300-2311. |
[7] | Lee S B, Kim H, Kim R J, Suh M C. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep, 2014, 33: 1535-1546. |
[8] | Sun Y H, Zhao J, Li X Y, Li Y Z. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytol, 2020, 227: 455-472. |
[9] |
Jaradat M R, Allan Feurtado J, Huang D Q, Lu Y Q, Cutler A J. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol, 2013, 13: 192.
doi: 10.1186/1471-2229-13-192 pmid: 24286353 |
[10] | Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125. |
[11] | Zhou L J, Geng Z Q, Wang Y X, Wang Y G, Liu S H, Chen C W, Song A P, Jiang J F, Chen S M, Chen F D. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in Chrysanthemum. Hortic Res, 2021, 8: 248. |
[12] | Ma Q B, Dai X Y, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X S, et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol, 2009, 150: 244-256. |
[13] | Zhang P Y, Wang T C, Cao L R, Jiao Z X, Ku L X, Dou D D, Liu Z X, Fu J X, Xie X W, Zhu Y F, et al. Molecular mechanism analysis of ZmRL6positively regulating drought stress tolerance in maize. Stress Biol, 2023, 3: 47. |
[14] | Zhang G F, Li G D, Xiang Y, Zhang A Y. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochem Biophys Res Commun, 2022, 604: 1-7. |
[15] |
王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007 |
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract). | |
[16] | 赵小慧, 郁凯, 刘冲, 钟明娟, 贺亭亭, 董静, 王凯, 邢锦城. 玉米叶片原生质体瞬时转化体系的优化. 大麦与谷类科学, 2022, 39(6): 6-10. |
Zhao X H, Yu K, Liu C, Zhong M J, He T T, Dong J, Wang K, Xing J C. Optimization of a transient transformation system for maize leaf protoplasts. Barley Cereal Sci, 2022, 39(6): 6-10 (in Chinese with English abstract). | |
[17] | Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep, 2007, 1: 37-48. |
[18] |
张鹤, 敖平星, 赵雁. ALA对高温胁迫下苜蓿属3个品种叶片生理的影响. 草地学报, 2022, 30: 1178-1184.
doi: 10.11733/j.issn.1007-0435.2022.05.019 |
Zhang H, Ao P X, Zhao Y. Effect of 5-aminolevulinic acid on leaf physiology of three cultivars of Medicago under high temperature stress. Acta Agrest Sin, 2022, 30: 1178-1184 (in Chinese with English abstract). | |
[19] | 刘乐, 王文可. 植物叶片扫描电镜样品不同处理与观察方法的研究进展. 广东蚕业, 2021, 55(3): 28-30. |
Liu L, Wang W K. Research progress of different treatment and observation methods of electron microscopy (SEM) samples of plant leaf. Guangdong Seric, 2021, 55(3): 28-30 (in Chinese with English abstract). | |
[20] | Wang A B, Liang K H, Yang S W, Cao Y B, Wang L, Zhang M, Zhou J, Zhang L Y. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics, 2021, 22: 565. |
[21] | Zhang J, Zhang Y, Feng C. Genome-wide analysis of MYB genes in Primulina eburnea (hance) and identification of members in response to drought stress. Int J Mol Sci, 2023, 25: 465. |
[22] | Su J C, Zhan N, Cheng X R, Song S L, Dong T Y, Ge X Y, Duan H Y. Genome-wide analysis of cotton MYB transcription factors and the functional Validation of GhMYB in response to drought stress. Plant Cell Physiol, 2024, 65: 79-94. |
[23] | Zhang P Y, Qiu X, Fu J X, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants, 2021, 27: 1295-1309. |
[24] | 王浩田, 蒋景龙, 王倩, 魏丽娜, 胡佳. R2R3-MYB转录因子响应植物抗逆机制研究进展. 分子植物育种, 网络首发[2023-08-10], http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1507.012.html. |
Wang H T, Jiang J L, Wang Q, Wei L N, Hu J. Research progress on the mechanism of R2R3-MYB transcription factors in response to plant stress tolerance. Molecular Plant Breeding, Published online [2023-08-10], http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1507.012.html (in Chinese with English abstract). | |
[25] | 周晓馥, 刘美琦, 金妍, 徐洪伟. 玉米MYB转录因子蛋白应答干旱胁迫功能研究. 吉林师范大学学报(自然科学版), 2022, 43(3): 100-111. |
Zhou X F, Liu M Q, Jin Y, Xu H W. Study on the function of Zea mays MYB transcription factor proteins in response to drought stress. J Jilin Norm Univ (Nat Sci Edn), 2022, 43(3): 100-111 (in Chinese with English abstract). | |
[26] | 张鹏钰, 付家旭, 仇晓, 王同朝, 卫丽. 玉米干旱-复水处理差异表达MYB-related基因的鉴定与分析. 农业生物技术学报, 2022, 30(2): 222-235. |
Zhang P Y, Fu J X, Qiu X, Wang T C, Wei L. Identification and analysis of differentially expressed MYB-related genes in maize (Zea mays) under drought stress and rewatering. J Agric Biotechnol, 2022, 30(2): 222-235 (in Chinese with English abstract) | |
[27] |
李春艳, 钟华, 杜利霞, 侯向阳. 白羊草BiMYB52基因的克隆及转基因拟南芥抗旱性表达分析. 草地学报, 2023, 31: 29-39.
doi: 10.11733/j.issn.1007-0435.2023.01.004 |
Li C Y, Zhong H, Du L X, Hou X Y. The cloning BiMYB52 gene from Bothriochloa ischaemum and analysis of drought resistance expression of transgenic Arabidopsis thaliana of that clone. Acta Agrest Sin, 2023, 31: 29-39 (in Chinese with English abstract). | |
[28] | Xu C J, Shan J M, Liu T M, Wang Q, Ji Y J, Zhang Y T, Wang M Y, Xia N, Zhao L. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiol, 2023, 191: 2427-2446. |
[29] | Phan T T, Sun B, Niu J Q, Tan Q L, Li J, Yang L T, Li Y R. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep, 2016, 35: 1891-1905. |
[30] | Tang Y H, Bao X X, Zhi Y L, Wu Q A, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168. |
[31] | Duan B L, Xie X F, Jiang Y H, Zhu N, Zheng H L, Liu Y X, Hua X J, Zhao Y Y, Sun Y Q. GhMYB44 enhances stomatal closure to confer drought stress tolerance in cotton and Arabidopsis. Plant Physiol Biochem, 2023, 198: 107692. |
[32] |
Xu B, Long Y, Feng X Y, Zhu X J, Sai N, Chirkova L, Betts A, Herrmann J, Edwards E J, Okamoto M, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun, 2021, 12: 1952.
doi: 10.1038/s41467-021-21694-3 pmid: 33782393 |
[33] | Tan Y Q, Yang Y, Shen X, Zhu M J, Shen J L, Zhang W, Hu H H, Wang Y F. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2023, 35: 239-259. |
[34] |
Fan W Q, Zhao M Y, Li S X, Bai X, Li J, Meng H W, Mu Z X. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol, 2016, 16: 99.
doi: 10.1186/s12870-016-0764-x pmid: 27101806 |
[35] | Qi G N, Yao F Y, Ren H M, Sun S J, Tan Y Q, Zhang Z C, Qiu B S, Wang Y F. The S-type anion channel ZmSLAC1 plays essential roles in stomatal closure by mediating nitrate efflux in maize. Plant Cell Physiol, 2018, 59: 614-623. |
[1] | YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163. |
[2] | YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed N application optimizes interspecific interactions and enhances N use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203. |
[3] | XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. Csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990. |
[4] | YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746. |
[5] | HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900. |
[6] | YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675. |
[7] | YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513. |
[8] | YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581. |
[9] | ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617. |
[10] | ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628. |
[11] | JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388. |
[12] | ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399. |
[13] | SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298. |
[14] | MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311. |
[15] | LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214. |
|