Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1838-1849.doi: 10.3724/SP.J.1006.2025.44219

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato

LI Qiu-Yun1,2(), LI Shi-Gui1,2, FAN Jun-Liang1,2, LIU Hao-Tian2,3, ZHAO Xiao-Bin1,2, LYU Shuo1,2, WANG Yan-Hao1,2, YUE Yun4, ZHANG Ning1,2,*(), SI Huai-Jun1,2   

  1. 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2State Key Laboratory of Aridland Crop Science / Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    4Gansu Agricultural Engineering Technology Research Institute, Lanzhou 730010, Gansu, China
  • Received:2024-12-28 Accepted:2025-03-26 Online:2025-07-12 Published:2025-04-03
  • Contact: *E-mail: ningzh@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program of China (Integration and Demonstration of Key Technologies for Quality and Efficiency Improvement of Seed Potato Propagation in Cold Regions of Weiyuan County)(2022YFD1602103)

Abstract:

To investigate the effects of different zinc fertilizer types and application methods on potato growth, yield, and quality, field experiments were conducted in 2023 and 2024 using the potato variety ‘Longshu 14’. Six treatments were applied: CK (no zinc fertilizer), T1 (basal application of ZnSO4·7H2O, 30 kg hm-2), T2 (foliar spraying of 0.3% ZnSO4·7H2O + 0.05% urea), T3 (seed dressing with 10 mg L-1 nano-zinc), T4 (seed dressing with 20 mg L-1 nano-zinc), and T5 (foliar spraying of 10 mg L-1 nano-zinc). The results showed that both ionic zinc and nano-zinc fertilizers significantly increased leaf relative chlorophyll content (SPAD values) compared to CK during the tuber formation and bulking stages. During the tuber bulking and starch accumulation stages, the net photosynthetic rate (Pn), peroxidase (POD), and catalase (CAT) activities were significantly enhanced under ionic zinc and nano-zinc treatments. Additionally, all zinc treatments led to a reduction in malondialdehyde (MDA) and proline (Pro) levels. During the tuber bulking stage, tuber dry matter accumulation was significantly higher in the zinc-treated groups than in CK. All zinc treatments increased potato yield and the proportion of large and medium-sized tubers compared to CK. The highest yield increase was observed under T5 (foliar spraying of 10 mg L-1 nano-zinc), reaching 52,947.25 kg hm-2 in 2024. Furthermore, this treatment significantly enhanced tuber starch content, vitamin C content, zinc concentration, and total tuber zinc accumulation compared to CK (P < 0.05). In conclusion, foliar spraying of 10 mg L-1 nano-zinc and spraying a mixture of 0.3% ZnSO4·7H2O + 0.05% urea effectively promoted potato growth, improved photosynthetic performance, and enhanced antioxidant enzyme activities. These findings provide a scientific basis for the optimal selection and application of zinc fertilizers in potato production.

Key words: zinc fertilizer, potato, fertilization method, yield, quality

Fig. 1

Effects of nano-zinc and ionic zinc fertilizer on potato plant height and stem diameter in 2024 CK: no application of zinc fertilizer; T1: basal application of ZnSO4·7H2O, 30 kg hm-2; T2: foliar spraying of a 0.3% ZnSO4·7H2O + 0.05% urea solution; T3: seed dressing with 10 mg L-1 nano-zinc; T4: seed dressing with 20 mg L-1 nano-zinc; T5: foliar spraying of 10 mg L-1 nano-zinc. Different lowercase letters within the same growth stage indicate significant differences between treatments (P < 0.05)."

Table 1

Effects of nano-zinc and ionic zinc fertilizer on SPAD values of potato leaves in 2024"

处理
Treatment
生育期Reproductive period
现蕾期
Squaring stage
块茎形成期
Tuber formation stage
块茎膨大期
Tuber bulking stage
淀粉积累期
Starch accumulation stage
CK 39.79±0.75 c 36.23±0.10 d 33.14±0.70 c 31.93±0.99 b
T1 40.62±1.09 bc 37.44±0.36 c 35.23±0.89 b 32.81±0.83 ab
T2 40.87±1.41 bc 40.40±1.07 b 37.31±0.99 a 33.52±1.45 ab
T3 41.19±0.56 abc 38.31±0.20 c 36.66±0.91 ab 33.09±0.32 ab
T4 42.69±0.56 a 39.50±0.22 b 36.90±0.62 ab 33.13±0.67 ab
T5 42.18±0.44 ab 41.61±0.65 a 37.51±1.36 a 34.31±1.03 a

Table 2

Effects of nano-zinc and ionic zinc fertilizer on photosynthesis of potato leaves in 2024"

生育期
Reproductive period
处理
Treatment
净光合速率
Pn (μmol m-2 s-1)
蒸腾速率
Tr (mmol m-2 s-1)
气孔导度
Gs (mmol m-2 s-1)
胞间CO2浓度
Ci (μmol m-2 s-1)
现蕾期
Squaring stage



CK 14.95±1.56 a 2.90±0.66 a 230.17±30.75 b 305.03±12.81 a
T1 16.00±2.14 a 3.21±0.99 a 237.68±26.54 ab 307.23±8.66 a
T2 16.25±1.62 a 3.38±0.94 a 247.66±18.93 ab 299.70±17.72 a
T3 16.85±1.70 a 3.25±0.12 a 255.09±5.34 ab 303.60±10.37 a
T4 16.92±2.83 a 3.35±1.07 a 272.35±16.93 a 292.70±12.34 a
T5 16.20±1.21 a 3.75±0.45 a 254.62±11.24 ab 301.36±14.27 a
块茎形成期
Tuber formation stage


CK 17.97±0.08 e 5.22±0.15 d 320.38±26.66 c 312.83±14.80 a
T1 18.08±0.06 de 5.54±0.36 cd 326.92±38.74 bc 317.53±15.01 a
T2 21.11±0.32 b 6.44±0.69 ab 365.85±7.15 ab 316.03±8.78 a
T3 18.66±0.21 d 5.77±0.18 cd 341.42±26.33 bc 318.83±13.18 a
T4 20.18±0.48 c 5.99±0.19 bc 355.07±10.98 bc 325.07±11.90 a
T5 21.88±0.66 a 6.81±0.15 a 399.29±4.62 a 333.40±2.08 a
块茎膨大期
Tuber bulking
stage


CK 15.02±0.12 d 4.13±0.19 a 257.90±17.13 c 309.20±7.70 a
T1 15.49±0.14 cd 4.15±0.25 a 275.59±12.89 bc 310.2±11.00 a
T2 20.29±1.06 a 4.67±0.18 a 305.54±10.28 ab 308.03±6.43 a
T3 16.27±0.20 c 4.31±0.32 a 294.71±12.07 ab 308.10±13.52 a
T4 18.06±0.09 b 4.38±0.19 a 299.44±11.63 ab 298.83±14.65 a
T5 20.94±0.42 a 4.71±0.83 a 324.38±29.05 a 303.50±11.54 a
淀粉积累期
Starch accumulation stage

CK 13.28±0.22 d 2.82±0.25 a 201.36±18.21 c 295.07±11.34 a
T1 13.80±0.54 cd 3.03±0.46 a 214.57±20.85 bc 295.17±10.56 a
T2 16.39±0.13 a 4.02±0.64 a 247.95±15.53 ab 281.43±6.73 ab
T3 14.08±0.75 bc 3.12±0.57 a 221.76±41.98 bc 284.4±6.70 ab
T4 14.79±0.20 b 3.83±0.26 a 235.68±11.23 abc 282.7±7.92 ab
T5 16.26±0.21 a 3.93±0.70 a 266.01±9.58 a 276.73±7.04 b

Fig. 2

Effects of nano-zinc and ionic zinc fertilizer on potato antioxidant enzyme activity, MDA and Pro content in 2024 Treatments are the same as those given in Fig. 1. Different lowercase letters within the same growth stage indicate significant differences between treatments (P < 0.05)."

Fig. 3

Effects of nano-zinc and ionic zinc fertilizer on the dry matter accumulation of potato in 2024 Treatments are the same as those given in Fig. 1. A, B, C, and D indicate the squaring, tuber formation, tuber bulking, and starch accumulation periods, respectively. Different lowercase letters within the same organ and growth stage indicate significant differences between treatments (P < 0.05)."

Fig. 4

Effects of nano-zinc and ionic zinc fertilizer on potato yield Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences between treatments (P < 0.05)."

Table 3

Effects of nano-zinc and ionic zinc fertilizer on potato yield and yield components"

年份
Year
处理
Treatment
大中薯率
Large and medium tuber rates (%)
小薯率
Small tuber rate
(%)
单株结薯数
Number of tubers per plant
单株薯重
Tuber weight per plant (kg)
单薯重
Individual tuber weight (kg)
2023 CK 72.57±4.73 b 27.43±2.43 a 5.88±0.22 b 0.44±0.02 b 0.07±0.01 a
T1 79.07±5.67 ab 20.93±1.25 ab 6.75±0.15 ab 0.46±0.06 ab 0.07±0.01 a
T2 81.88±5.03 ab 18.12±3.80 ab 6.96±1.17 ab 0.43±0.03 b 0.06±0.01 a
T3 83.71±6.25 ab 16.29±2.33 ab 7.53±0.21 ab 0.52±0.07 ab 0.07±0.01 a
T4 82.77±10.35 ab 17.23±0.97 ab 7.65±0.11 ab 0.57±0.04 ab 0.07±0.01 a
T5 84.69±5.29 a 15.31±1.12 b 7.93±0.97 a 0.69±0.08 a 0.09±0.01 a
2024 CK 67.94±3.18 c 32.06±2.39 a 5.06±0.17 a 0.85±0.07 c 0.17±0.01 a
T1 73.86±0.60 b 26.14±2.84 ab 5.28±0.25 a 0.87±0.03 bc 0.17±0.01 a
T2 82.33±3.59 a 17.67±3.59 bc 5.25±0.44 a 0.95±0.06 ab 0.18±0.01 a
T3 75.75±4.67 b 24.25±1.37 d 5.25±0.21 a 0.89±0.03 bc 0.17±0.01 a
T4 77.98±1.38 ab 22.02±1.79 cd 5.16±0.15 a 0.89±0.04 bc 0.17±0.01 a
T5 81.88±0.44 a 18.12±1.85 d 5.47±0.08 a 1.00±0.03 a 0.18±0.01 a

Table 4

Effects of nano-zinc and ionic zinc fertilizer on potato quality"

年份
Year
处理
Treatment
淀粉含量
Starch content
(%)
维生素C含量
VC content
(mg 100 g-1)
还原糖含量
Reducing sugar content (%)
蛋白质含量
Protein content
(%)
2023 CK 19.43±0.49 b 15.65±0.8 b 0.23±0.01 a 2.58±0.15 a
T1 20.28±0.42 ab 16.22±0.44 ab 0.22±0.01 ab 2.61±0.26 a
T2 21.26±0.32 a 16.35±0.60 ab 0.20±0.01 bc 2.62±0.07 a
T3 20.38±0.51 ab 16.28±0.62 ab 0.22±0.02 ab 2.62±0.10 a
T4 20.64±0.53 a 16.89±0.69 ab 0.22±0.01 ab 2.69±0.15 a
T5 21.32±0.84 a 17.41±0.59 a 0.18±0.01 c 2.71±0.10 a
2024 CK 19.71±0.54 d 15.69±0.43 b 0.22±0.02 a 2.58±0.13 a
T1 20.20±0.12 cd 15.83±0.17 b 0.21±0.02 ab 2.61±0.18 a
T2 20.98±0.52 ab 16.43±0.27 ab 0.20±0.01 ab 2.64±0.07 a
T3 20.29±0.16 cd 16.26±0.88 ab 0.21±0.01 ab 2.61±0.09 a
T4 20.61±0.06 bc 16.27±0.37 ab 0.20±0.01 ab 2.64±0.09 a
T5 21.38±0.40 a 17.12±0.64 a 0.19±0.01 b 2.69±0.12 a

Table 5

Effects of nano-zinc and ionic zinc fertilizer on zinc content and accumulation in potato tubers"

处理
Treatment
2023 2024
块茎锌含量
Tuber zinc content
(mg kg-1)
块茎锌积累量
Tuber zinc accumulation (mg)
块茎锌含量
Tuber zinc content
(mg kg-1)
块茎锌积累量
Tuber zinc accumulation
(mg)
CK 13.34±1.00 d 1.82±0.39 c 14.58±0.54 c 2.04±0.12 e
T1 14.76±0.47 cd 2.03±0.15 bc 16.15±0.43 bc 2.41±0.25 d
T2 17.54±0.19 b 2.52±0.16 ab 19.27±0.48 a 3.03±0.05 ab
T3 15.06±1.28 cd 2.12±0.38 bc 16.68±0.81 bc 2.51±0.09 cd
T4 16.40±0.45 bc 2.33±0.13 bc 17.26±0.46 b 2.76±0.17 bc
T5 19.37±1.77 a 2.92±0.29 a 19.39±0.88 a 3.12±0.25 a

Fig. 5

Perason correlation analysis of nano-zinc and ion zinc on potato index in 2024 * and ** indicate significant correlation at the 0.05 and 0.01 probability levels, respectively. A: plant height; B: stem diameter; C: chlorophyll relative content; D: net photosynthetic rate; E: transpiration rate; F: stomatal conductance; G: intercellular CO2 concentration; H superoxide dismutase; I: peroxidase; J: catalase; K: malondialdehyde content; L: proline content; M: large and medium tuber rate; N: small tuber rate; O: number of tubers per plant; P: individual tuber weight; Q: yield; R: starch content; S: vitamin C content; T: reducing sugar content; U: protein content; V: zinc content in tubers; W: zinc accumulation in tubers."

[1] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应. 作物学报, 2025, 51: 713-724.
doi: 10.3724/SP.J.1006.2025.44130
Su M, Wu J R, Hong Z Q, Li F G, Zhou T, Wu H L, Kang J H. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in semi-arid area of northwest China. Acta Agron Sin, 2025, 51: 713-724 (in Chinese with English abstract).
[2] 毛伟荣. 施用锌肥对马铃薯产量的影响. 特种经济动植物, 2022, 25(9): 22-23.
Mao W R. Effect of zinc fertilizer application on potato yield. Spec Econ Anim Plants, 2022, 25(9): 22-23 (in Chinese).
[3] 袁辉, 惠领领, 谢军红, 周永杰, 谢丽华. 铁、锌肥对马铃薯产量、品质及土壤养分的影响. 中国农学通报, 2024, 40(12): 15-21.
doi: 10.11924/j.issn.1000-6850.casb2023-0012
Yuan H, Hui L L, Xie J H, Zhou Y J, Xie L H. Effects on yield and quality of potato and soil nutrients: iron and zinc fertilizers. Chin Agric Sci Bull, 2024, 40(12): 15-21 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2023-0012
[4] Mahmoud A W M, Abdeldaym E A, Abdelaziz S M, El-Sawy M B I, Mottaleb S A. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy, 2020, 10: 19.
[5] 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展. 中国农业科技导报, 2024, 26(8): 9-19.
Sun L, Xu Y, Cai Q, Guo J H, Zhao C, Guo B W, Xing Z P, Huo Z Y, Zhang H C, Hu Y J. Research progress on effects of medium and trace elements on yield and quality of rice. Chin Agric Sci Technol, 2024, 26(8): 9-19 (in Chinese with English abstract).
[6] 李芳亭, 鲁强, 王世国, 周军, 袁海生, 姜栩. 黄土丘陵区土壤钼锌含量及农作物对钼锌的反应. 农业环境科学学报, 2002, 21: 559-561.
Li F T, Lu Q, Wang S G, Zhou J, Yuan H S, Jiang X. Concentration of molybdenum and zinc in soil of upland of loess and response of crops. J Agro-Environ Sci, 2002, 21: 559-561 (in Chinese with English abstract).
[7] 杨富强.微肥对玉米东农264生长、籽粒产量及品质的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2023.
Yang F Q. Effect of Microfertilizer on the Growth, Grain Yield and Quality of Dongnong 264. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2023 (in Chinese with English abstract).
[8] 孙莲强, 顾学花, 张佳蕾, 刘辰, 高波, 孙奇泽, 王媛媛, 魏彤彤, 李向东. 锌肥对花生生理特性、产量及品质的影响. 花生学报, 2014, 43(1): 1-6.
Sun L Q, Gu X H, Zhang J L, Liu C, Gao B, Sun Q Z, Wang Y Y, Wei T T, Li X D. Effects of applying zinc fertilizer on physiological characteristics, yield and quality of peanut. J Peanut Sci, 2014, 43(1): 1-6 (in Chinese with English abstract).
[9] Elemike E E, Uzoh I M, Onwudiwe D C, Babalola O O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci, 2019, 9: 499.
[10] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响. 作物杂志, 2022, (4): 107-114.
Chen S Y, Wang R, Chen Z Q, Zhang H P, Wang J J, Shan Y H, Yang Y J. Effects of nano-zinc and ion-zinc on rice yield formation and grain zinc content. Crops, 2022, (4): 107-114 (in Chinese with English abstract).
[11] 王锐.纳米锌施用方式和用量对优质食味粳稻南粳9108产量和品质强化的影响. 扬州大学硕士学位论文, 江苏扬州, 2022.
Wang R. Effects of Application Mode and Dosage of Nano-zinc on Yield and Quality Enhancement of Good Quality and Tasty Japonica rice Nanjing 9108. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[12] Walworth J L, Muniz J E. A compendium of tissue nutrient concentrations for field-grown potatoes. Am Potato J, 1993, 70: 579-597.
[13] 赵兴杰, 韩旭平, 程升. 干旱条件下膜下滴灌施锌对马铃薯的促进效应. 山西农业科学, 2017, 45(1): 63-66.
Zhao X J, Han X P, Cheng S. Effect of zinc fertilization on potato under drip irrigation under drought condition. J Shanxi Agric Sci, 2017, 45(1): 63-66 (in Chinese with English abstract).
[14] 杜平, 赵竹青, 宋波涛, 刘新伟. 马铃薯锌营养特性及锌生物强化技术研究进展. 华中农业大学学报, 2021, 40(4): 36-43.
Du P, Zhao Z Q, Song B T, Liu X W. Advances on nutritional characteristics of zinc and zinc biofortification in potato. J Huazhong Agric Univ, 2021, 40(4): 36-43 (in Chinese with English abstract).
[15] 范奕, 李亚杰, 罗磊, 姚彦红, 李丰先, 董爱云, 刘慧霞, 牛彩萍, 李德明. 叶面施锌对马铃薯产量和锌含量的影响. 中国土壤与肥料, 2023, (10): 217-226.
Fan Y, Li Y J, Luo L, Yao Y H, Li F X, Dong A Y, Liu H X, Niu C P, Li D M. Effect of foliar zinc application on yield and zinc concentration of potato. Soil Fert China, 2023, (10): 217-226 (in Chinese with English abstract).
[16] Huang X S, Liu J H, Chen X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol, 2010, 10: 230.
[17] Shi J, Fu X Z, Peng T, Huang X S, Fan Q J, Liu J H. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol, 2010, 30: 914-922.
[18] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121-126.
pmid: 6727660
[19] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
Zou Q. Experimental Instruction of Plant Physiology. Beijing: China Agriculture Press, 2000 (in Chinese).
[20] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207.
[21] 杜平, 张海清, 李磊, 赵竹青, 刘新伟. 基施锌肥对马铃薯锌含量及块茎品质的影响. 中国马铃薯, 2020, 34(5): 275-280.
Du P, Zhang H Q, Li L, Zhao Z Q, Liu X W. Effect of soil application of zinc on zinc content and tuber quality of potato. Chin Potato J, 2020, 34(5): 275-280 (in Chinese with English abstract).
[22] Cakmak I, Pfeiffer W H, McClafferty B. REVIEW: biofortification of durum wheat with zinc and iron. Cereal Chem, 2010, 87: 10-20.
[23] Zając T, Oleksy A, Stokłosa A, Klimek-Kopyra A, Macuda J. Vertical distribution of dry mass in cereals straw and its loss during harvesting. Int Agrophys, 27: 89-95.
[24] 边彩燕, 李世成, 刘颖, 陈超, 赵婧, 李继明, 刘喜霞, 张连瑞. 外源铁、锌对马铃薯产量的影响. 农业科技与信息, 2024, 21(7): 53-57.
Bian C Y, Li S C, Liu Y, Chen C, Zhao J, Li J M, Liu X X, Zhang L R. Effects of exogenous iron and zinc on potato yield. Agric Sci Technol Inf, 2024, 21(7): 53-57 (in Chinese).
[25] 付春霞, 张元珍, 王衍安, 范晓丹, 闫玉静, 张友朋. 缺锌胁迫对苹果叶片光合速率及叶绿素荧光特性的影响. 中国农业科学, 2013, 46: 3826-3833.
doi: 10.3864/j.issn.0578-1752.2013.18.011
Fu C X, Zhang Y Z, Wang Y A, Fan X D, Yan Y J, Zhang Y P. Effects of zinc deficiency on photosynthetic rate and chlorophyll fluorescence characteristics of apple leaves. Sci Agric Sin, 2013, 46: 3826-3833 (in Chinese with English abstract).
[26] 惠领领, 谢军红, 李玲玲, 周永杰, 王进斌, 谢丽华, 赵潇潇. 铁锌肥对陇中旱农区马铃薯光合特性和产量的影响. 甘肃农业大学学报, 2023, 58(2): 68-76.
Hui L L, Xie J H, Li L L, Zhou Y J, Wang J B, Xie L H, Zhao X X. Effects of iron and zinc fertilization on photosynthetic characteristics and yield of potato in semi-arid areas of central Gansu province. J Gansu Agric Univ, 2023, 58(2): 68-76 (in Chinese with English abstract).
[27] 宋佳承, 王天, 闫士朋, 张俊莲, 沈宝云, 李朝周. 不同种植模式对土壤质量及马铃薯生长的影响. 土壤学报, 2020, 57: 490-499.
Song J C, Wang T, Yan S P, Zhang J L, Shen B Y, Li C Z. Influences of planting pattern on soil quality and potato growth. Acta Pedol Sin, 2020, 57: 490-499 (in Chinese with English abstract).
[28] 胡新元, 孙小花, 罗爱花, 柳永强, 唐德晶, 谢奎忠. 叶面喷施硫酸锌对马铃薯抗病性和产量的影响. 西北农业学报, 2023, 32: 1187-1193.
Hu X Y, Sun X H, Luo A H, Liu Y Q, Tang D J, Xie K Z. Effects of foliar spraying of zinc sulfate on disease resistance and yield of potato. Acta Agric Boreali-Occident Sin, 2023, 32: 1187-1193 (in Chinese with English abstract).
[29] 肖宝莹, 王会志, 吴春燕, 田庆龙, 梁美兮, 王薇. 外源锌对番茄锌元素积累及吸收利用的影响. 吉林农业大学学报, 网络首发[2024-04-09], https://doi.org/10.13327/j.jjlau.2024.20455.
Xiao B Y, Wang H Z, Wu C Y, Tian Q L, Liang M X, Wang W. Effects of exogenous zinc on zinc accumulation, absorption and utilization in tomato. J Jilin Agric Univ, Published online [2024-04-09], https://doi.org/10.13327/j.jjlau.2024.20455 (in Chinese with English abstract).
[30] 王延明, 张春红, 邱慧珍, 孙小龙, 张俊莲, 王蒂, 李德明. 半干旱雨养条件下不同锌肥对马铃薯‘新大坪’干物质积累和产量的影响. 甘肃农业大学学报, 2014, 49(6): 35-40.
Wang Y M, Zhang C H, Qiu H Z, Sun X L, Zhang J L, Wang D, Li D M. Effects of different kinds of zinc fertilizer application on dry matter accumulation and yield of potato in rainfed conditions in Gansu Province. J Gansu Agric Univ, 2014, 49(6): 35-40 (in Chinese with English abstract).
[31] 孙小龙, 王延明, 张春红, 张俊莲, 邱慧珍, 王蒂, 李德明. 不同锌肥对旱作马铃薯植株锌的吸收、积累与分配的影响. 干旱地区农业研究, 2015, 33(3): 72-78.
Sun X L, Wang Y M, Zhang C H, Zhang J L, Qiu H Z, Wang D, Li D M. Effects of different kinds of zinc fertilizers on zinc absorption, accumulation and distribution of potato under rainfed conditions. Agric Res Arid Areas, 2015, 33(3): 72-78 (in Chinese with English abstract).
[32] 苏素苗, 康天恺, 邹家龙, 汪本福, 张洋洋, 廖世鹏, 李小坤. 不同水稻品种和施锌方式对水稻产量及籽粒锌有效性的影响. 中国农业科学, 2024, 57: 3023-3034.
doi: 10.3864/j.issn.0578-1752.2024.15.009
Su S M, Kang T K, Zou J L, Wang B F, Zhang Y Y, Liao S P, Li X K. Effects of different rice varieties and zinc application methods on rice yield and grain zinc availability. Sci Agric Sin, 2024, 57: 3023-3034 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.15.009
[33] 索炎炎, 张翔, 司贤宗, 李亮, 余琼, 程培军, 邱岭军, 余辉. 不同施锌方式下外源磷对花生根系形态、叶绿素含量及产量的影响. 中国油料作物学报, 2021, 43: 664-672.
Suo Y Y, Zhang X, Si X Z, Li L, Yu Q, Cheng P J, Qiu L J, Yu H. Effects of exogenous phosphorus on root morphology, chlorophyll content and yield of peanut under different zinc application methods. Chin J Oil Crop Sci, 2021, 43: 664-672 (in Chinese with English abstract).
[34] Nair R, Varghese S H, Nair B G, Maekawa T, Yoshida Y, Kumar D S. Nanoparticulate material delivery to plants. Plant Sci, 2010, 179: 154-163.
[35] Zhang Y Q, Deng Y, Chen R Y, Cui Z L, Chen X P, Yost R, Zhang F S, Zou C Q. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant Soil, 2012, 361: 143-152.
[36] 张欣, 户少武, 章燕柳, 牛玺朝, 邵在胜, 杨阳, 童楷程, 王云霞, 杨连新. 叶面施锌对不同水稻品种稻米锌营养的影响及其机理. 农业环境科学学报, 2019, 38: 1450-1458.
Zhang X, Hu S W, Zhang Y L, Niu X C, Shao Z S, Yang Y, Tong K C, Wang Y X, Yang L X. Effect of foliar zinc application on zinc nutrient levels of different rice cultivars. J Agro-Environ Sci, 2019, 38: 1450-1458 (in Chinese with English abstract).
[37] Kromann P, Valverde F, Alvarado S, Vélez R, Pisuña J, Potosí B, Taipe A, Caballero D, Cabezas A, Devaux A. Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers. Plant Soil, 2017, 411: 121-138.
[38] White P J, Thompson J A, Wright G, Rasmussen S K. Biofortifying Scottish potatoes with zinc. Plant Soil, 2017, 411: 151-165.
[39] 马振勇, 杜虎林, 刘荣国, 严子柱. 施锌肥对马铃薯干物质积累、生理特性及块茎营养品质的影响. 干旱区资源与环境, 2017, 31(1): 148-153.
Ma Z Y, Du H L, Liu R G, Yan Z Z. Effects of Zinc fertilizer on potato dry matter accumulation, physiological characteristics, and tubers nutritional quality. J Arid Land Resour Environ, 2017, 31(1): 148-153 (in Chinese with English abstract).
[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[3] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[4] LI Yi-Qian, XU Shou-Zhen, LIU Ping, MA Qi, XIE Bin, CHEN Hong. Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2025, 51(8): 2128-2138.
[5] FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151.
[6] WU Bin, CAO Yong-Gang, HU Fa-Long, YIN Wen, FAN Zhi-Long, FAN Hong, CHAI Qiang. Compensation effect of no-tillage rotation on yield reduction of nitrogen- reduced wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1959-1968.
[7] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[8] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[9] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[10] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[11] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[12] LI Bing-Lin, YE Xiao-Lei, XIAO Hong, XIAO Guo-Bin, LYU Wei-Sheng, LIU Jun-Quan, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium fertilization rates on rapeseed yield, magnesium uptake, and yield loss caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(7): 1850-1860.
[13] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[14] DONG Wei-Jin, ZHANG Ya-Feng, LI Qi-Yun, LU Yang, ZHANG Zheng-Kun, SUI Li. Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration [J]. Acta Agronomica Sinica, 2025, 51(7): 1874-1886.
[15] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .