Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1827-1837.doi: 10.3724/SP.J.1006.2025.43028

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling

ZHANG Jian-Peng1,WANG Guo-Rui3,BIE Hai2,YE Fei-Yu3,MA Chen-Chen3,LIANG Xiao-Han3,LU Xiao-Min3,SHANG Xiao-Li4,*,CAO Li-Ru3,*   

  1. 1 Puyang Vocational and Technical College, Puyang 457000, Henan, China; 2 Zhengzhou Agricultural Science and Technology Research Institute, Zhengzhou 450002, Henan, China; 3 Grain Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; 4 Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2024-07-03 Revised:2024-12-12 Accepted:2024-12-12 Online:2025-07-12 Published:2025-01-10
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32201708), Major Science and Technology Project of Henan Province (221100110300) and the China Agriculture Research System of MOF and MARA (CARS-02-08). 

Abstract:

Drought significantly impacts corn growth and development, ultimately causing yield losses. To identify key drought-resistant genes in maize and elucidate their molecular mechanisms, we analyzed the maize drought-rehydration transcriptome and identified a drought-responsive gene, GRMZM2G050550, named ZmMYB153. Phylogenetic analysis and subcellular localization revealed that the ZmMYB153 protein shares a high degree of similarity with homologous proteins in other species and is localized in the nucleus. Tissue-specific expression analysis showed that ZmMYB153 is most highly expressed in leaves. Under polyethylene glycol (PEG)-simulated drought conditions, the expression of ZmMYB153 was significantly upregulated. Similarly, under abscisic acid (ABA) treatment, its expression followed a dynamic pattern, initially increasing and then decreasing over time. Expression analysis of ZmMYB153 in different drought-resistant maize inbred lines under drought stress revealed that its expression level in the highly drought-resistant inbred line Zheng 6722 (Z6722) was significantly higher than in the moderately drought-resistant inbred line B73. To further investigate the biological function of ZmMYB153, transgenic maize lines overexpressing the gene were generated. Under drought stress, compared to wild-type (WT) plants, ZmMYB153 overexpression lines (OE-1 and OE-2) exhibited higher leaf relative water content (RWC), enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and lower ion leakage and malondialdehyde (MDA) content. Observations of leaf stomatal status under drought conditions revealed that stomatal closure was significantly greater in ZmMYB153 overexpression lines than in WT plants, leading to a significantly reduced water loss rate. These findings suggest that ZmMYB153 plays a positive regulatory role in maize responses to drought stress. Furthermore, under drought stress, the expression levels of ABA signaling pathway genes ZmABI1 and ZmPAYL10 were significantly altered in ZmMYB153 overexpression lines, while the expression of the stomatal movement-related gene ZmSLAC1 was significantly higher than in WT plants. In summary, ZmMYB153 likely regulates leaf stomatal activity through its involvement in the ABA signaling pathway, thereby enhancing drought tolerance in maize.

Key words: maize, MYB, drought, stoma, abscisic acid

[1] 杨丽萍, 李一荻, 丁晓月, 闵菲. 转录因子TCP调控植物生长发育的研究进展. 吉林师范大学学报(自然科学版), 2024, 45(1): 112–116.
Yang L P, Li Y D, Ding X Y, Min F. Research progress on transcription factor TCP regulate plant growth and development. J Jilin Norm Univ (Nat Sci Edn), 2024, 45(1): 112–116 (in Chinese with English abstract).

[2] Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553–3558.

[3] Tian F, Yang D C, Meng Y Q, Jin J P, Gao G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res, 2020, 48: D1104–D1113.

[4] 郭凯, 侯留迪, 张莹莹, 周开明, 张丙林, 邹华文. 植物MYB基因家族研究进展. 长江大学学报(自然科学), 2020, 17(6): 93–98.
Guo K, Hou L D, Zhang Y Y, Zhou K M, Zhang B L, Zou H W. Research progress of MYB gene family in plants. J Yangtze Univ (Nat Sci Edn), 2020, 17(6): 93–98 (in Chinese with English abstract).

[5] Liu R D, Shen Y H, Wang M X, Liu R H, Cui Z Q, Li P Z, Wu Q D, Shen Q, Chen J, Zhang S P, et al. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.). Plant Sci, 2023, 329: 111608.

[6] Lee S B, Kim H U, Suh M C. MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol, 2016, 57: 2300–2311.

[7] Lee S B, Kim H, Kim R J, Suh M C. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep, 2014, 33: 1535–1546. 

[8] Sun Y H, Zhao J, Li X Y, Li Y Z. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytol, 2020, 227: 455–472.

[9] Jaradat M R, Feurtado J A, Huang D Q, Lu Y Q, Cutler A J. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol, 2013, 13: 192. 

[10] Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125.

[11] Zhou L J, Geng Z Q, Wang Y X, Wang Y G, Liu S H, Chen C W, Song A P, Jiang J F, Chen S M, Chen F D. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in Chrysanthemum. Hortic Res, 2021, 8: 248.

[12] Ma Q B, Dai X Y, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X S, et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol, 2009, 150: 244–256.

[13] Zhang P Y, Wang T C, Cao L R, Jiao Z X, Ku L X, Dou D D, Liu Z X, Fu J X, Xie X W, Zhu Y F, et al. Molecular mechanism analysis of ZmRL6 positively regulating drought stress tolerance in maize. Stress Biol, 2023, 3: 47.

[14] Zhang G F, Li G D, Xiang Y, Zhang A Y. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochem Biophys Res Commun, 2022, 604: 1–7.

[15] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76–88.
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76–88 (in Chinese with English abstract). 

[16] 赵小慧, 郁凯, 刘冲, 钟明娟, 贺亭亭, 董静, 王凯, 邢锦城. 玉米叶片原生质体瞬时转化体系的优化. 大麦与谷类科学, 2022, 39(6): 6–10.
Zhao X H, Yu K, Liu C, Zhong M J, He T T, Dong J, Wang K, Xing J C. Optimization of a transient transformation system for maize leaf protoplasts. Barley Cereal Sci, 2022, 39(6): 6–10 (in Chinese with English abstract).

[17] Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep, 2007, 1: 37–48.

[18] 张鹤, 敖平星, 赵雁. ALA对高温胁迫下苜蓿属3个品种叶片生理的影响. 草地学报, 2022, 30: 1178–1184.
Zhang H, Ao P X, Zhao Y. Effect of 5-aminolevulinic acid on leaf physiology of three cultivars of Medicago under high temperature stress. Acta Agrestia Sin, 2022, 30: 1178–1184 (in Chinese with English abstract in Chinese).

[19] 刘乐, 王文可. 植物叶片扫描电镜样品不同处理与观察方法的研究进展. 广东蚕业, 2021, 55(3): 28–30.
Liu L, Wang W K. Research progress of different treatment and observation methods of electron microscopy (SEM) samples of plant leaf. Guangdong Seric, 2021, 55(3): 28–30 (in Chinese with English abstract).

[20] Wang A B, Liang K H, Yang S W, Cao Y B, Wang L, Zhang M, Zhou J, Zhang L Y. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics, 2021, 22: 565.

[21] Zhang J, Zhang Y, Feng C. Genome-wide analysis of MYB genes in Primulina eburnea (hance) and identification of members in response to drought stress. Int J Mol Sci, 2023, 25: 465.

[22] Su J C, Zhan N, Cheng X R, Song S L, Dong T Y, Ge X Y, Duan H Y. Genome-wide analysis of Cotton MYB transcription factors and the functional Validation of GhMYB in response to drought stress. Plant Cell Physiol, 2024, 65: 79–94.

[23] Zhang P Y, Qiu X, Fu J X, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants, 2021, 27: 1295–1309.

[24] 王浩田, 蒋景龙, 王倩, 魏丽娜, 胡佳. R2R3-MYB转录因子响应植物抗逆机制研究进展. 分子植物育种, 网络首发[2023-08-10], http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1507.012.html.

Wang H T, Jiang J L, Wang Q, Wei L N, Hu J. Research progress on the mechanism of R2R3-MYB transcription factors in response to plant stress tolerance. Molecular Plant Breeding, Published online [2023-08-10], http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1507.012.html (in Chinese with English abstract).

[25]周晓馥, 刘美琦, 金妍, 徐洪伟. 玉米MYB转录因子蛋白应答干旱胁迫功能研究. 吉林师范大学学报(自然科学版), 2022, 43(3): 100–111.
Zhou X F, Liu M Q, Jin Y, Xu H W. Study on the function of Zea mays MYB transcription factor proteins in response to drought stress. J Jilin Norm Univ (Nat Sci Edn), 2022, 43(3): 100–111 (in Chinese with English abstract). 

[26] 张鹏钰, 付家旭, 仇晓, 王同朝, 卫丽. 玉米干旱-复水处理差异表达MYB-related基因的鉴定与分析. 农业生物技术学报, 2022, 30(2): 222–235.
Zhang P Y, Fu J X, Qiu X, Wang T C, Wei L. Identification and analysis of differentially expressed MYB-related genes in Maize (Zea mays) under drought stress and rewatering. J Agric Biotechnol, 2022, 30(2): 222–235 (in Chinese with English abstract)

[27] 李春艳, 钟华, 杜利霞, 侯向阳. 白羊草BiMYB52基因的克隆及转基因拟南芥抗旱性表达分析. 草地学报, 2023, 31: 29–39.
Li C Y, Zhong H, Du L X, Hou X Y. The cloning BiMYB52 gene from Bothriochloa ischaemum and analysis of drought resistance expression of transgenic Arabidopsis thaliana of that clone. Acta Agrestia Sin, 2023, 31: 29–39 (in Chinese with English abstract).

[28] Xu C J, Shan J M, Liu T M, Wang Q, Ji Y J, Zhang Y T, Wang M Y, Xia N, Zhao L. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiol, 2023, 191: 2427–2446.

[29] Phan T T, Sun B, Niu J Q, Tan Q L, Li J, Yang L T, Li Y R. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep, 2016, 35: 1891–1905.

[30] Tang Y H, Bao X X, Zhi Y L, Wu Q A, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019. 10: 168.

[31] Duan B L, Xie X F, Jiang Y H, Zhu N, Zheng H L, Liu Y X, Hua X J, Zhao Y Y, Sun Y Q. GhMYB44 enhances stomatal closure to confer drought stress tolerance in cotton and Arabidopsis. Plant Physiol Biochem, 2023, 198: 107692.

[32] Xu B, Long Y, Feng X Y, Zhu X J, Sai N, Chirkova L, Betts A, Herrmann J, Edwards E J, Okamoto M, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun, 2021, 12: 1952.

[33] Tan Y Q, Yang Y, Shen X, Zhu M J, Shen J L, Zhang W, Hu H H, Wang Y F. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2023, 35: 239–259.

[34] Fan W Q, Zhao M Y, Li S X, Bai X, Li J, Meng H W, Mu Z X. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol, 2016, 16: 99.

[35] Qi G N, Yao F Y, Ren H M, Sun S J, Tan Y Q, Zhang Z C, Qiu B S, Wang Y F. The S-type anion channel ZmSLAC1 plays essential roles in stomatal closure by mediating nitrate efflux in maize. Plant Cell Physiol, 2018, 59: 614–623.

[1] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[2] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[3] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[4] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[5] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[6] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[7] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[8] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[9] ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399.
[10] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[11] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[12] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[13] LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101.
[14] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[15] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .