Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2060-2076.doi: 10.3724/SP.J.1006.2025.44197

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization of GhCDN10 encoding cadinene synthase and its involvement in gossypol biosynthesis pathway in Gossypium hirsutum

XUE Xiao-Fei1(), DAI Yun-Jing1, LI Xi-Lin1, DING Yan-Yan1, WANG Xiang1, LEI Zhang-Ying1, HAN Huan-Yong2,*(), HE Dao-Hua1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832099, Xinjiang, China
  • Received:2024-11-30 Accepted:2025-04-27 Online:2025-08-12 Published:2025-05-13
  • Contact: *E-mail: daohuahe@nwafu.edu.cn;E-mail: hanhy1@163.com
  • Supported by:
    National Natural Science Foundation of China(32301956);PhD Start-up Research Fund of Northwest A&F University(2452023053);China Agriculture Research System of MOF and MARA(CARS-15-25)

Abstract:

Gossypol is a major terpenoid compound in cotton (Gossypium hirsutum), predominantly stored in pigment glands distributed throughout the plant. Cadinene synthase is a key enzyme involved in the gossypol biosynthetic pathway. Due to its toxicity, large quantities of cottonseed products cannot be fully utilized for human consumption. Therefore, the development of new cultivars featuring “plants with high gossypol content but seeds with none or low levels of gossypol” is essential to maximize the value of the cotton industry. Based on RNA-Seq data from glanded and glandless cotton, we cloned GhCDN10, a member of the cadinene synthase gene family, and conducted DNA sequence analysis, including linkage disequilibrium (LD), SNP effect prediction, haplotype construction, and association analysis. We also performed expression profiling, virus-induced gene silencing (VIGS), and subcellular localization assays. GhCDN10 comprises seven exons, and its flanking intergenic regions (IRs) contain 533 cis-acting elements from 63 classes. Re-sequencing data revealed a SNP frequency of 7.22 SNPs kb-1 in GhCDN10, with anucleotide diversity (π) value of 0.22595 and an LD decay distance of approximately 100 kb. Nineteen SNPs were identified within the gene body, forming nine haplotypes. Although these SNPs were not directly associated with gossypol content, cluster analysis based on them could partially distinguish low-gossypol from normal accessions. The GhCDN10 protein contains two conserved domains (PF01397 and PF03936) and conserved motifs such as DDTYD and DDVAE, characteristic of cadinene synthase. Subcellular localization of the GFP fusion protein showed that GhCDN10 is localized to both the plasma membrane and nucleus. Comparative analysis revealed slight variations in exon-intron structure and motif arrangement among GhCDN10 orthologs from 17 species. RNA-Seq data showed significantly higher GhCDN10 expression in glanded cotton compared to glandless cotton. This gene is highly expressed in roots of glanded cotton but shows low or no expression in flowers and fibers. Following VIGS treatment, GhCDN10 expression decreased to 21.3% of the control level. Microscopic analysis and HPLC quantification revealed significantly reduced gland numbers and gossypol content in VIGS plants, highlighting the critical role of GhCDN10 in gossypol biosynthesis and pigment gland development. This study provides new insights into the gossypol biosynthetic pathway and identifies GhCDN10 as a promising candidate gene for the development of glandless cotton germplasm through genetic engineering.

Key words: Gossypium hirsutum, Delta-cadinene synthase, GhCDN10, gossypol, cloning, VIGS

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
GhCDN10_CF GATCAATCGAAATGGCTTCACAAGT 基因克隆Gene cloning
GhCDN10_CR AAGCTATAGCGACGAAAGAAGGA 基因克隆Gene cloning
GhCDN10_SF TGC TCTAGAGGGTGTGAGTTACCATTTCACTAAGG VIGS
GhCDN10_SR CGG GGTACCCTTAAATGGTTGGTGGTGAAAGAAATTGC VIGS
GhCDN10_QF TGCGTCCCAAAGCCGATT qRT-PCR
GhCDN10_QR TGTTGGTGGCGCTTTTCAG qRT-PCR
GhCDN10_LF GTTCTTCACTGTTGATA CATATGATGGCTTCACAAGTTTCTCAAATGCC 亚细胞定位Subcellular localization
GhCDN10_LR TACCACCGCTACC GTCGACAAGTGCAACTGGTTCAATGAG 亚细胞定位Subcellular localization
UBQ7_QF GAAGGCATTCCACCTGACCAAC 内参基因Internal control gene
UBQ7_QR CTTGACCTTCTTCTTCTTGTGCTTG 内参基因Internal control gene

Fig. 1

PCR amplification and sequence comparison of the GhCDN10 gene A: PCR amplification of the GhCDN10 gene; M: 5000 bp DNA marker; Lane 1: PCR products amplified using ‘86 III 72’ gDNA as template; Lane 2: PCR products amplified using ‘86 III 72 glandless’ gDNA as template. B: comparison of PCR sequences amplified from glanded and glandless cotton; a: gene sequence from TM-1 reference genome; b: gene sequence from PCR product using ‘86 III 72 glandless’ gDNA as a template; c: gene sequence from PCR product using ‘86 III 72’ gDNA as a template."

Fig. 2

Exon-intron structure, motif arrangment, LD of SNPs and haplotype in GhCDN10 genes A: GhCDN10 gene structure (exon-intron); B: LD between SNPs in GhCDN10 body; C: LD decay curve in the whole DNA segment of GhCDN10; D: haplotypes of GhCDN10; E: information on SNPs in the DNA body of GhCDN10."

Table 2

Features of DNA sequence of GhCDN10"

染色体片段
Chromosomal
segment
起止位置
Start-end
长度
Length (bp)
顺式作用元件
Cis-acting element
SNP频率
SNPs frequency
(SNPs kb-1)
序列多样性
Sequence diversity
类型
Types
数量Number 数量
Number
频率
Frequency
π值
π value
θ值
θ value
基因间区(上游)
Intergenic region (upstream)
4,665,043-4,748,046 83,004 34 172 1176 14.19208713 0.16563 0.12901
DNA区段
DNA body
4,748,047-4,750,955 2909 38 240 19 7.21897559 0.22595 0.12646
基因间区(下游)
Intergenic region (downstream)
4,750,956-4,875,091 124,136 31 121 2914 23.49036541 0.17492 0.12557
全域区段
Whole segment
4,665,043-4,875,091 210,049 103 533 4109 19.57162376 0.17281 0.12647

Fig. 3

Cluster analysis of 32 germplasms based on SNPs within the gene body of GhCDN10 Black and red indicates normal accessions and low-gossypol germplasms, respectively."

Fig. 4

Phylogenetic tree (A) based on amino acid sequences, motif arrangement (B) and exon-intron structure (C) of GhCDN10"

Fig. 5

Secondary structure (A) and tertiary structure (B) of GhCDN10 protein Blue: α-helix; Red: β-turn; Green: extended strand; Purple: random coil."

Fig. 6

Expression profiles of the GhCDN10 gene A: expression pattern of GhCDN10 in G. hirsutum (glanded cotton and glandless cotton) embryo (14, 16, 32 DPA) (RNA-Seq); B: expression pattern in G. hirsutum (glanded cotton and glandless cotton) leaf (RNA-Seq); C: expression pattern in diverse tissues, developmental stages of ovule and fiber (RNA-Seq); D: expression pattern of upland cotton roots under light and dark conditions (RNA-Seq); E: expression pattern of roots and stems of glanded cotton TM-1 and TM-1_VIGS plants, and of glandless cotton T582 (RNA-Seq); F: expression pattern of leaves and ovules of glanded cotton and glandless cotton (RNA-Seq); G: gene expression abundance from qRT-PCR assays; H: expression pattern validation; Bar: expression levels in qRT-PCR assay; Line: abundance of gene expression in RNA-Seq data. Different lowercase letters indicate significant difference at the 0.05 probability level. DPA: days post-anthesis."

Fig. 7

GO term (A) and KEGG pathway (B) enrichment of genes correlated with GhCDN10 in expression profiles"

Fig. 8

VIGS analysis of the GhCDN10 gene A: PCR amplification of VIGS fragment of GhCDN10; M: 2000 bp DNA marker; 1: PCR product; B, C: cotton phynotype after VIGS and the silencing effect (albino leaf) of PDS gene in cotton; D, E: plant leaves inoculated with Agrobacterium carrying TRV2::GUS and TRV2::GhCDN10 vectors respectively (illustrating quantity and density of gland); F: qRT-PCR expression level of GhCDN10 gene after VIGS; G: number of glands on leaves after VIGS; H: gossypol content of leaves after VIGS; I, J: liquid chromatography profile of gossypol (Left: gossypol standard, Right: tested sample). Different lowercase letters indicate significant differences at P < 0.05."

Fig. 9

Subcellular localization of the GhCDN10-GFP fusion protein"

[1] 肖水平, 宋国立, 余进祥. 棉花纤维品质相关基因挖掘及功能基因研究进展. 棉花科学, 2020, 42(2): 3-14.
Xiao S P, Song G L, Yu J X. Research progress of cotton fiber quality related gene mining and functional genes. Cotton Sci, 2020, 42(2): 3-14 (in Chinese with English abstract).
[2] Chen Y R, Liu Y X, Chen Y D, Zhang Y G, Zan X J. Design and preparation of polysulfide flexible polymers based on cottonseed oil and its derivatives. Polymers, 2020, 12: 1858.
[3] 乔丹, 白冰楠, 葛群, 刘小芳, 栾玉娟, 牛皓, 龚举武, 巩万奎, 闫浩亮, 李俊文, 等. 棉籽大小数量性状核苷酸定位及候选基因初步筛选. 中国棉花, 2024, 51(4): 25-34.
doi: 10.11963/cc20230166
Qiao D, Bai B N, Ge Q, Liu X F, Luan Y J, Niu H, Gong J W, Gong W K, Yan H L, Li J W, et al. Quantitative trait nucleotides mapping of cottonseed size-related traits and preliminary screening of candidate genes. China Cotton, 2024, 51(4): 25-34 (in Chinese with English abstract).
doi: 10.11963/cc20230166
[4] Jan M, Liu Z X, Guo C X, Zhou Y P, Sun X W. An overview of cotton gland development and its transcriptional regulation. Int J Mol Sci, 2022, 23: 4892.
[5] Janga M R, Pandeya D, Campbell L M, Konganti K, Villafuerte S T, Puckhaber L, Pepper A, Stipanovic R D, Scheffler J A, Rathore K S. Genes regulating gland development in the cotton plant. Plant Biotechnol J, 2019, 17: 1142-1153.
doi: 10.1111/pbi.13044 pmid: 30467959
[6] Wu C F, Cheng H L, Li S Y, Zuo D Y, Lin Z X, Zhang Y P, Lyu L M, Wang Q L, Song G L. Molecular cloning and characterization of GhERF105, a gene contributing to the regulation of gland formation in upland cotton (Gossypium hirsutum L.). BMC Plant Biol, 2021, 21: 102.
[7] 董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展. 植物学报, 2020, 55: 340-350.
doi: 10.11983/CBB19186
Dong Y M, Zhang W Y, Ling Z Y, Li J R, Bai H T, Li H, Shi L. Advances in transcription factors regulating plant terpenoids biosynthesis. Chin Bull Bot, 2020, 55: 340-350 (in Chinese with English abstract).
[8] Brandt W, Bräuer L, Günnewich N, Kufka J, Rausch F, Schulze D, Schulze E, Weber R, Zakharova S, Wessjohann L. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. Phytochemistry, 2009, 70: 1758-1775.
doi: 10.1016/j.phytochem.2009.09.001 pmid: 19878958
[9] Köllner T G, Lenk C, Schnee C, Köpke S, Lindemann P, Gershenzon J, Degenhardt J. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biol, 2013, 13: 15.
doi: 10.1186/1471-2229-13-15 pmid: 23363415
[10] 付建玉. 茶树倍半萜类物质代谢及其对虫害胁迫响应. 中国农业科学院博士学位论文, 北京, 2017.
Fu J Y. The Sesquiterpene Metabolism and Response to Diverse Biotic Stresses in Tea Plant. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[11] Bayendi Loudit S M, Boullis A, Verheggen F, Francis F. Identification of the alarm pheromone of cowpea aphid, and comparison with two other Aphididae species. J Insect Sci, 2018, 18: 1.
[12] Sun Y, Huang X Z, Ning Y S, Jing W X, Bruce T J A, Qi F J, Xu Q X, Wu K M, Zhang Y J, Guo Y Y. TPS46, a rice terpene synthase conferring natural resistance to bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus). Front Plant Sci, 2017, 8: 110.
[13] Wang C Y, Chen Z Z, Guo Y X, Sun H J, Zhang G L, Kuang M G, Yang S X, Li X M, Díaz de la Garza R I, Gou J Y. Isolation of wheat mutants with higher grain phenolics to enhance anti-oxidant potential. Food Chem, 2020, 303: 125363.
[14] 项时康, 杨伟华. 棉属植物种子中棉酚及其旋光体的研究. 中国农业科学, 1993, 26(6): 31-35.
Xiang S K, Yang W H. Studies on gossypol and its enantiomers in the seeds of cotton Gossypium. Sci Agric Sin, 1993, 26(6): 31-35 (in Chinese with English abstract).
[15] 张长波, 孙红霞, 巩中军, 祝增荣. 植物萜类化合物的天然合成途径及其相关合酶. 植物生理学通讯, 2007, 43: 779-786.
Zhang C B, Sun H X, Gong Z J, Zhu Z R. Plant terpenoid natural metabolism pathways and their synthases. Plant Physiol Commun, 2007, 43: 779-786 (in Chinese with English abstract).
[16] Liu W, Zhang Z Q, Li W, Zhu W, Ren Z Y, Wang Z Y, Li L L, Jia L, Zhu S J, Ma Z B. Genome-wide identification and comparative analysis of the 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGR) gene family in Gossypium. Molecules, 2018, 23: 193.
[17] 陈新, 李玲玲, 吕慧贞, 刘庆忠, 张元湖. 法呢基焦磷酸(FPP)的生物合成及其分子调控. 生物技术通报, 2007, 23(2): 67-71.
Chen X, Li L L, Lyu H Z, Liu Q Z, Zhang Y H. The biosynthetic pathway and molecular regulation of farnesyl diphosphate (FPP). Biotechnol Bull, 2007, 23(2): 67-71 (in Chinese with English abstract).
[18] 周婷, 郭三堆, 张锐. 棉花杜松烯合成酶基因的克隆及其表达分析. 生物技术进展, 2011, 1(3): 207-213.
doi: 10.3969/j.issn.2095-2341.2011.03.10
Zhou T, Guo S D, Zhang R. Cloning and expression analysis of cotton GhCdn gene. Curr Biotechnol, 2011, 1(3): 207-213 (in Chinese with English abstract).
[19] Martin G S, Liu J G, Benedict C R, Stipanovic R D, Magill C W. Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-delta-cadinene synthase. Phytochemistry, 2003, 62: 31-38.
pmid: 12475616
[20] 张娜, 赵佩, 沈法富. 陆地棉三个WRKY基因的克隆及表达分析. 分子植物育种, 2012, 10: 169-173.
Zhang N, Zhao P, Shen F F. Cloning and expression analysis of 3 WRKY genes from upland cotton. Mol Plant Breed, 2012, 10: 169-173 (in Chinese with English abstract).
[21] Zhang C P, Zhang J L, Sun Z R, Liu X Y, Shu L Z, Wu H, Song Y, He D H. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene, 2022, 828: 146462.
[22] Chen X Y, Chen Y, Heinstein P, Davisson V J. Cloning, expression, and characterization of (+)-delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys, 1995, 324: 255-266.
doi: 10.1006/abbi.1995.0038 pmid: 8554317
[23] Davis E M, Tsuji J, Davis G D, Pierce M L, Essenberg M. Purification of (+)-delta-cadinene synthase, a sesquiterpene cyclase from bacteria-inoculated cotton foliar tissue. Phytochemistry, 1996, 41: 1047-1055.
pmid: 8728715
[24] 任丹凤. 利用CAD1基因调控创造低酚棉材料. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Ren D F. Creating Low-Gossypol Cotton Material by Regulating CAD1Gene. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[25] Sunilkumar G, Campbell L M, Puckhaber L, Stipanovic R D, Rathore K S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA, 2006, 103: 18054-18059.
doi: 10.1073/pnas.0605389103 pmid: 17110445
[26] Palle S R, Campbell L M, Pandeya D, Puckhaber L, Tollack L K, Marcel S, Sundaram S, Stipanovic R D, Wedegaertner T C, Hinze L, et al. RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J, 2013, 11: 296-304.
doi: 10.1111/pbi.12013 pmid: 23078138
[27] Rathore K S, Sundaram S, Sunilkumar G, Campbell L M, Puckhaber L, Marcel S, Palle S R, Stipanovic R D, Wedegaertner T C. Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnol J, 2012, 10: 174-183.
doi: 10.1111/j.1467-7652.2011.00652.x pmid: 21902797
[28] Jiang S Y, Jin J J, Sarojam R, Ramachandran S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol Evol, 2019, 11: 2078-2098.
[29] Liu J Y, Huang F, Wang X, Zhang M, Zheng R, Wang J, Yu D Y. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene, 2014, 544: 83-92.
[30] Degenhardt J, Köllner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70: 1621-1637.
doi: 10.1016/j.phytochem.2009.07.030 pmid: 19793600
[31] Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the Kingdom. Plant J, 2011, 66: 212-229.
[32] Wen T Y, Xu X, Ren A P, Zhao G, Wu J H. Genome-wide identification of terpenoid synthase family genes in Gossypium hirsutum and functional dissection of its subfamily cadinene synthase A in gossypol synthesis. Front Plant Sci, 2023, 14: 1162237.
[33] Zhang C P, Liu X Y, Song Y, Sun Z R, Zhang J L, Wu H, Yang Y Z, Wang Z K, He D H. Comparative transcriptome analysis reveals genes associated with the gossypol synthesis and gland morphogenesis in Gossypium hirsutum. Genes, 2022, 13: 1452.
[34] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229.
[35] Wen X P, Chen Z W, Yang Z R, Wang M J, Jin S X, Wang G D, Zhang L, Wang L J, Li J Y, Saeed S, et al. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci China Life Sci, 2023, 66: 2214-2256.
doi: 10.1007/s11427-022-2278-0 pmid: 36899210
[36] Li Y Q, Si Z F, Wang G P, Shi Z L, Chen J W, Qi G A, Jin S K, Han Z G, Gao W H, Tian Y, et al. Genomic insights into the genetic basis of cotton breeding in China. Mol Plant, 2023, 16: 662-677.
doi: 10.1016/j.molp.2023.01.012 pmid: 36738104
[37] Li J Y, Yuan D J, Wang P C, Wang Q Q, Sun M L, Liu Z P, Si H, Xu Z P, Ma Y Z, Zhang B Y, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol, 2021, 22: 119.
doi: 10.1186/s13059-021-02351-w pmid: 33892774
[38] Huang J Q, Fang X, Tian X, Chen P, Lin J L, Guo X X, Li J X, Fan Z, Song W M, Chen F Y, et al. Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol, 2020, 16: 250-256.
[39] Zhang J Y, Zhao T L, Sheng K, Sun Y, Han Y F, Chen Y R, Zhi Y E, Zhu S J, Chen J H. Root illumination promotes seedling growth and inhibits gossypol biosynthesis in upland cotton. Plants, 2022, 11: 728.
[40] Zang Y H, Xu C Y, Xuan L S, Ding L Y, Zhu J K, Si Z F, Zhang T Z, Hu Y. Identification and characteristics of a novel gland-forming gene in cotton. Plant J, 2021, 108: 781-792.
[41] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748.
[42] 周利利. 利用CRISPR/Cas9创制低酚棉新种质及调控棉酚生物合成转录因子的研究. 中国农业科学院博士学位论文, 北京, 2023.
Zhou L L. Creating Low-Gossypol Cotton New Germplasm Via CRISPR/Cas9 and Study on Transcription Factors Regulating Gossypol Biosynthesis. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2023 (in Chinese with English abstract).
[43] 赵天伦. 陆地棉色素腺体形态建成与棉酚合成机理及全基因组解析. 浙江大学博士学位论文, 浙江杭州, 2019.
Zhao T L. Mechanisms of Pigment Glands Formation and Gossypol Biosynthesis and Their Genome-Wide Analysis in Upland Cotton. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[44] 毛琼玲, 崔银仓, 陈国通, 韩飞, 郭伟, 张玉霞. HPLC法测定新疆棉籽中棉酚含量. 安徽农业科学, 2019, 47: 216-217.
Mao Q L, Cui Y C, Chen G T, Han F, Guo W, Zhang Y X. Determination of gossypol in cotton-seed of Xinjiang by HPLC. J Anhui Agric Sci, 2019, 47: 216-217 (in Chinese with English abstract).
[45] Joshi B, Singh S, Tiwari G J, Kumar H, Boopathi N M, Jaiswal S, Adhikari D, Kumar D, Sawant S V, Iquebal M A, et al. Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton (Gossypium hirsutum L.). Front Plant Sci, 2023, 14:1252746.
[46] Gennadios H A, Gonzalez V, Di Costanzo L, Li A M, Yu F L, Miller D J, Allemann R K, Christianson D W. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry, 2009, 48: 6175-6183.
doi: 10.1021/bi900483b pmid: 19489610
[47] Benedict C R, Alchanati I, Harvey P J, Liu J G, Stipanovic R D, Bell A A. The enzymatic formation of δ-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry, 1995, 39: 327-331.
[48] Benedict C R, Lu J L, Pettigrew D W, Liu J, Stipanovic R D, Williams H J. The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant delta-cadinene synthase. Plant Physiol, 2001, 125: 1754-1765.
doi: 10.1104/pp.125.4.1754 pmid: 11299356
[49] Sun Q, Cai Y F, Xie Y F, Mo J C, Yuan Y L, Shi Y Z, Li S W, Jiang H Z, Pan Z, Gao Y L, et al. Gene expression profiling during gland morphogenesis of a mutant and a glandless upland cotton. Mol Biol Rep, 2010, 37: 3319-3325.
doi: 10.1007/s11033-009-9918-3 pmid: 19888674
[50] Cheng H L, Lu C R, Yu J Z, Zou C S, Zhang Y P, Wang Q L, Huang J, Feng X X, Jiang P F, Yang W C, et al. Fine mapping and candidate gene analysis of the dominant glandless gene Gle2 in cotton (Gossypium spp.). Theor Appl Genet, 2016, 129: 1347-1355.
[51] Zhao T L, Xie Q W, Li C, Li C, Mei L, Yu J Z, Chen J H, Zhu S J. Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biol, 2020, 20: 88.
doi: 10.1186/s12870-020-2294-9 pmid: 32103722
[52] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803-813.
doi: 10.1038/s41588-018-0119-7 pmid: 29736016
[1] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[2] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[3] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[4] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[5] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[6] WU Fa-Xuan, LI Qin, YANG Xin, LI Xin-Gen, XU Jian-Tang, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Li-Wu. Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis [J]. Acta Agronomica Sinica, 2024, 50(3): 645-655.
[7] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[8] RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939.
[9] WANG Lian-Nan, LI Yuan-Chao, YU Nai-Tong, MAI Wei-Tao, LI Ya-Jun, CHEN Xin. Functional identification of MeTCP3a transcription factor in cassava leaf development [J]. Acta Agronomica Sinica, 2024, 50(11): 2720-2730.
[10] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[11] MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517.
[12] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[13] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[14] LI Meng-Yuan, ZHANG Wen-Cheng, GAO Yong, QIN Yong-Tian, BO Shi-Rong, SONG Kun-Yang, TANG Ji-Hua, FU Zhi-Yuan. Map-based cloning and allelic analysis of gene controlling maize kernel mutant crk4 [J]. Acta Agronomica Sinica, 2023, 49(10): 2613-2620.
[15] WANG Mu-Mu, HE Yan-Fan, ZHENG Yong-Sheng, WANG Hui, WANG Li-Yuan, WANG Dong-Jian, ZHANG Han, LI Ru-Yu. Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 1948-1956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!