Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 1043-1052.doi: 10.3724/SP.J.1006.2024.34118

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field

LIU Cheng-Min1(), MEN Ya-Qi1, QIN Du-Lin1,2, YAN Xiao-Yu1,3, ZHANG Le1, MENG Hao1, SU Xun-Ya1, SUN Xue-Zhen1, SONG Xian-Liang1, MAO Li-Li1,*()   

  1. 1Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2Shandong Agricultural Technology Promotion Center, Jinan 250013, Shandong, China
    3Agriculture and Rural Bureau of Laoshan District, Qingdao 266000, Shandong, China
  • Received:2023-07-12 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-15
  • Contact: * E-mail: maolili6666@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2022MC085);Shandong Province Agricultural Variety Engineering Project(2023LZGC002);Shandong Cotton Industry Technology Research System(SDAIT-03)

Abstract:

Nitrogen application can increase the availability of nitrogen in the soil, thereby improving plant photosynthesis and promoting the absorption of nitrogen and the accumulation of dry matter, ultimately leading to an increase in crop yield. However, it is unclear whether the nitrogen application rate should be adjusted under long-term high nitrogen straw returning conditions. To investigate the effects of nitrogen application rate on cotton photosynthesis rate, dry matter and nutrient accumulation and distribution, yield, nitrogen utilization, and soil nitrogen changes under long-term straw return conditions, we set up seven nitrogen application rates of pure nitrogen 0 (N0), 150 (N150), 180 (N180), 210 (N210), 240 (N240), 270 (N270), and 300 (N300) kg hm-2. Compared with the commonly used nitrogen application rate (N300) in field agriculture, from 2020 to 2021, a 30% reduction in nitrogen (N210) achieved higher yields, 1853.62 kg hm-2 and 1872.43 kg hm-2 respectively, while a 40% reduction in nitrogen (N180) only maintained a high yield of 1743.68 kg hm-2 in the first year. In 2021, the net photosynthetic rate, dry matter and nutrient accumulation of N210 were higher than that of N180, and there was no significant difference between them in the dry matter and nutrient partition coefficient of reproductive organs and nitrogen fertilizer use efficiency, but the apparent nitrogen surplus of N180 soil was significantly reduced by 39.15%. In summary, under long-term stubble returning conditions, applying 210 kg hm-2 of nitrogen is more suitable for achieving the goal of reducing weight and promoting yield in the northwest cotton region of Shandong.

Key words: cotton, nitrogen application rate, straw returning, yield, nitrogen utilization, photosynthetic rate

Fig. 1

Average monthly temperature and precipitation during cotton growth seasons in 2020 and 2021"

Fig. 2

Effects of nitrogen application rate on net photosynthetic rate of cotton functional leaves Different lowercase letters in the same column indicate significant differences at the 0.05 probability level among the treatments in the same year. N0: nitrogen rate 0 kg hm-2; N150: nitrogen rate 150 kg hm-2; N180: nitrogen rate 180 kg hm-2; N210: nitrogen rate 210 kg hm-2; N240: nitrogen rate 240 kg hm-2; N270: nitrogen rate 270 kg hm-2; N300: nitrogen rate 300 kg hm-2."

Fig. 3

Effects of nitrogen application rate on dry matter accumulation above ground of cotton Treatments are the same as those given in Fig. 2."

Table 1

Effects of nitrogen application rate on dry matter distribution above ground of cotton (150 days after sowing)"

处理
Treatment
2020 2021
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
N0 50.69 ab 49.31 ab 47.89 b 52.11 a
N150 50.01 ab 49.99 ab 49.22 ab 50.78 ab
N180 49.74 b 50.26 a 49.34 ab 50.66 ab
N210 49.81 b 50.19 a 48.36 ab 51.64 a
N240 51.10 ab 48.90 ab 50.73 ab 49.27 ab
N270 53.25 a 46.75 b 51.22 a 48.78 b
N300 54.92 a 45.08 b 51.02 a 48.98 b

Fig. 4

Effects of nitrogen application rate on nitrogen accumulation above ground of cotton Treatments are the same as those given in Fig. 2."

Table 2

Effects of nitrogen application rate on nitrogen distribution above ground of cotton (150 days after sowing)"

处理
Treatment
2020 2021
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
N0 44.25 bc 55.75 ab 43.81 a 56.19 a
N150 44.30 bc 55.70 ab 43.87 a 56.13 a
N180 44.15 bc 55.85 ab 44.98 a 55.02 a
N210 43.39 c 56.61 a 45.18 a 54.82 a
N240 44.52 abc 55.48 abc 44.62 a 55.38 a
N270 45.28 ab 54.72 bc 45.19 a 54.81 a
N300 46.11 a 53.89 c 45.14 a 54.86 a

Table 3

Effects of nitrogen application rate on yield of cotton"

处理
Treatment
2020 2021
单位面积铃数
Boll density
(boll m-2)
单铃重
Boll weight
(g boll-1)
衣分
Lint
percentage
(%)
产量
Lint yield
(kg hm-2)
单位面积铃数
Boll density
(boll m-2)
单铃重
Boll weight
(g boll-1)
衣分
Lint
percentage
(%)
产量
Lint yield
(kg hm-2)
N0 53.54 c 5.63 b 40.25 a 1214.40 b 52.58 d 5.52 c 41.02 a 1191.42 c
N150 57.28 c 5.74 b 40.81 a 1342.14 b 58.53 d 5.78 b 40.31 a 1362.68 c
N180 74.73 b 5.82 ab 40.10 a 1743.68 a 64.65 c 5.88 b 40.03 a 1521.29 bc
N210 76.29 a 5.99 a 40.54 a 1853.62 a 77.04 a 5.96 a 40.78 a 1872.43 a
N240 74.68 b 5.83 ab 40.22 a 1751.14 a 72.69 b 5.90 ab 40.80 a 1743.96 ab
N270 72.23 b 5.83 ab 41.10 a 1731.42 a 70.85 b 5.93 a 40.37 a 1704.44 ab
N300 71.88 b 5.89 ab 40.57 a 1716.45 a 70.07 b 5.92 a 40.02 a 1659.54 ab

Table 4

Effects of nitrogen application rate on nitrogen use efficiency of cotton"

处理
Treatment
2020 2021
氮肥农学利用率
Nitrogen
agronomic efficiency
(kg kg-1)
氮肥偏生产力
Nitrogen partial factor productivity
(kg kg-1)
氮肥贡献率
Nitrogen
contribution rate
(%)
氮肥农学利用率
Nitrogen
agronomic efficiency
(kg kg-1)
氮肥偏生产力
Nitrogen partial factor productivity
(kg kg-1)
氮肥贡献率
Nitrogen
contribution rate
(%)
N150 0.85 d 7.46 c 9.52 b 1.14 b 9.08 a 12.57 b
N180 2.94 a 8.30 a 30.35 a 1.69 ab 8.31 a 20.37 ab
N210 3.04 ab 8.10 b 34.48 a 3.24 a 8.92 a 36.37 a
N240 2.24 bc 7.72 c 30.65 a 2.30 ab 7.27 b 31.68 a
N270 1.91 cd 6.49 c 29.86 a 1.90 ab 6.31 b 30.10 a
N300 1.67 cd 5.77 c 29.25 a 1.56 ab 5.53 b 28.21 a

Fig. 5

Effects of nitrogen application rate on soil apparent nitrogen surplus Different lowercase letters in the same column indicate significant differences at the 0.05 probability level among the years in the same treatment. Treatments are the same as those given in Fig. 2."

[1] Jonas K, Matin Q. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc Natl Acad Sci USA, 2012, 109: 11652-11656.
doi: 10.1073/pnas.1203647109 pmid: 22753493
[2] Gui Y Y, Wei J J, Mao L Y, Li H B, Zhang R H, Zhou H, Yang R Z, Liu X H. Application of 15N stable isotope labeling technology in sugarcane nitrogen research. Agric Biotechnol, 2020, 9: 104-107.
[3] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosy, 2002, 63: 117-127.
doi: 10.1023/A:1021107026067
[4] Wang S H, Mao L L, Shi J L, Nie J J, Song X L, Sun X Z. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields. J Integr Agric, 2021, 20: 2090-2099.
doi: 10.1016/S2095-3119(20)63323-8
[5] Zhang L, Mao L L, Yan X Y, Liu C M, Song X L, Sun X Z. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind Crops Prod, 2022, 177: 114472.
doi: 10.1016/j.indcrop.2021.114472
[6] Mo R X, Jiang L G, Guo L, Hu J M, Liu K Q, Zhou J M, Liang T F, Zeng K, Ding C Q. Effect of nitrogen application on contents of different forms of nitrogen in rice plants. Agric Sci Technol, 2011, 12: 1484-1489.
[7] 宋兴虎. 氮肥用量对夏直播棉花产量形成和养分利用的影响. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Song X H. Effect of Nitrogen Fertilizer Application on Yield Formation and Nutrient Utilization of Summer Direct Seeding Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[8] Shang-Guan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot, 2000, 44: 141-149.
pmid: 10996367
[9] Cai R G, Zhang M, Yin Y Q, Wang P, Zhang T B, Gu F, Dai Z M, Liang T B, Wu Y H, Wang Z L. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grown wheat. Agric Sci China, 2008, 7: 157-167.
doi: 10.1016/S1671-2927(08)60035-8
[10] Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J Integr Agric, 2021, 20: 606-621.
doi: 10.1016/S2095-3119(20)63407-4
[11] Li J, Hu W S, Lu Z F, Meng F J, Cong R H, Li X K, Ren T, Lu J W. Imbalance between nitrogen and potassium fertilization influences potassium deficiency symptoms in winter oilseed rape (Brassica napus L.) leaves. Crop J, 2022, 10: 565-576.
doi: 10.1016/j.cj.2021.06.001
[12] Zhu K Y, Yan J Q, Shen Y, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. Deciphering the morpho-physiological traits for high yield potential in nitrogen efficient varieties (NEVs): a japonica rice case study. J Integr Agric, 2022, 21: 947-963.
doi: 10.1016/S2095-3119(20)63600-0
[13] Wang R, An J W, Jie Z J, Hua L M, Liu Y. Effects of different nitrogen application methods on enzyme activities in leaves at late growth stage of spring maize. Agric Sci Technol, 2011, 12: 1605-1607.
[14] Zhang M, Pan G F, Huang Y Q, He J O, Fang X D, Liu Z H, Zhan M. Effects of increased planting density with reduced nitrogen application on yield formation and nitrogen utilization of autumn maize. Agric Sci Technol, 2019, 20: 1-13.
[15] Cui Z J, Yan B, Gao Y H, Wu B, Wang Y F, Wang H D, Xu P, Zhao B Q, Cao Z, Zhang Y, Xie Y P, Hu Y P, Ma X B, Niu J Y. Agronomic cultivation measures on productivity of oilseed flax: a review. Oil Crop Sci, 2022, 7: 53-62.
doi: 10.1016/j.ocsci.2022.02.006
[16] Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron, 2006, 24: 282-290.
doi: 10.1016/j.eja.2005.10.004
[17] Nie Y P, Chen H S, Wang K L, Ding Y L. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of southwest China. Plant Ecol, 2014, 215: 1099-1109.
doi: 10.1007/s11258-014-0369-0
[18] Xue H Y, Han Y C, Li Y B, Wang G P, Feng L, Fan Z Y, Du W L, Yang B F, Cao C G, Mao S C. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Res, 2015, 184: 17-27.
doi: 10.1016/j.fcr.2015.09.004
[19] Yao H S, Zhang Y L, Yi X P, Hu Y Y, Luo H H, Gou L, Zhang W F. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Res, 2015, 184: 39-49.
doi: 10.1016/j.fcr.2015.09.005
[20] Dordas C A, Sioulas C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res, 2009, 110: 35-43.
doi: 10.1016/j.fcr.2008.06.011
[21] Chen L, Qiao Z, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425-1428.
[22] Ye J Q, Yuan R X, Wang Z H, Liu J S. Dynamic changes of nitrogenin saline-alkaline paddy field and its potential environmental impacts. Agric Sci Technol, 2011, 12: 443-446.
[23] Dai J J, Liu L Z, Wang X C, Fang Q N, Cheng Y R, Wang D N, Peng X L. Effects of carbon and nitrogen additions on soil microbial biomass carbon and enzyme activities under rice straw returning. J Northeast Agric Univ, 2021, 28: 21-30.
[24] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. pp 42-106.
Bao S D. Soil and Agro-chemistry Analysis. Beijing: China Agriculture Press, 2005. pp 42-106. (in Chinese)
[25] Sun C X, Qi H, Hao J J, Miao L, Wang J, Wang Y, Liu M, Chen L J. Single leaves photosynthetic characteristics of two insect-resistant transgenic cotton (Gossypium hirsutum L.) varieties in response to light. Photosynthetica, 2009, 47: 399-408.
doi: 10.1007/s11099-009-0061-0
[26] Nakaji T, Fukami M, Dokiya Y, Izuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 2001, 15: 453-461.
doi: 10.1007/s00468-001-0130-x
[27] Zhang J H, Liu J L, Zhang J B, Zhao F T, Cheng Y N, Wang W P. Effects of nitrogen application rates on translocation of dry matter and nitrogen uilization in rice and wheat. Acta Agron Sin, 2010, 36: 1736-1742.
doi: 10.1016/S1875-2780(09)60079-1
[28] Zhou G Y, Wang B, Xia H. Effects of density and nitrogen application rate on population structure and yield of early-maturing late japonica Tongjing 981. Agric Biotechnol, 2020, 9: 92-98.
[29] Peng J Y, Qu H P, Huang J S, Zhou L Q, Xie R L, Zhu X H, Zeng Y, Tan H W. Effects of different nitrogen levels on growth and nitrogen utilization of sugarcane. Asian Agric Res, 2022, 14: 26-29.
[30] Wang Q, Li F R, Zhao L, Zhang E H, Shi S L, Zhao W Z, Song W X, Vance M M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil, 2010, 337: 325-339.
doi: 10.1007/s11104-010-0530-z
[31] Zhang Q X, Gao Y H, Yan B, Cui Z J, Wu B, Yang K, Ma J. Perspective on oil flax yield and dry biomass with reduced nitrogen supply. Oil Crop Sci, 2020, 5: 69-73.
[32] Niu X K, Xie R Z, Liu X, Zhang F L, Li S K, Gao S J. Maize yield gains in northeast China in the last six decades. J Integr Agric, 2013, 12: 630-637.
doi: 10.1016/S2095-3119(13)60281-6
[33] Lin E, Liu H G, Li X X, Li L, Sumera A. Promoting the production of salinized cotton field by optimizing water and nitrogen use efficiency under drip irrigation. J Arid Land, 2021, 13: 699-716.
doi: 10.1007/s40333-021-0012-6
[34] Liu Z L, Tao L Y, Liu T T, Zhang X H, Wang W, Song J M, Yu C L, Peng X L. Nitrogen application after low-temperature exposure alleviates tiller decrease in rice. Environ Exp Bot, 2018, 158: 205-214.
doi: 10.1016/j.envexpbot.2018.11.001
[35] Wen B B, Li C, Fu X L, Li D M, Li L, Chen X D, Wu H Y, Cui X W, Zhang X H, Shen H Y, Zhang W Q, Xiao W, Gao D S. Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiol Biochem, 2019, 142: 363-371.
doi: 10.1016/j.plaphy.2019.07.007
[36] Lin D X, Fan X H, Hu F, Zhao H T, Luo J F. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere, 2007, 17: 639-645.
doi: 10.1016/S1002-0160(07)60076-9
[37] Sakariyawo O S, Oyeledun K O, Adeyemi N O, Atayese M O. Nitrogen use efficiency and performance of maize (Zea mays L.) cultivars as influenced by calcium carbide and inorganic nitrogen application rates in a derived savanna. J Plant Nutr, 2020, 43: 784-797.
doi: 10.1080/01904167.2020.1711947
[38] Neugschwandtner R W, Kaul H P. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crops Res, 2015, 179: 113-119.
doi: 10.1016/j.fcr.2015.04.018
[39] Shi Z L, Li D D, Jing Q, Cai J, Jiang D, Cao W X, Dai T B. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation. Field Crops Res, 2012, 127: 241-247.
doi: 10.1016/j.fcr.2011.11.025
[40] Li Y, Chen Y, Wu C Y, Tang X, Ji X J. Determination of optimum nitrogen application rates in Zhejiang province, China, based on rice yields and ecological security. J Integr Agric, 2015, 14: 2426-2433.
doi: 10.1016/S2095-3119(15)61168-6
[41] Li P C, Dong H L, Liu A Z, Liu J R, Sun M, Li Y B, Liu S D, Zhao X H, Mao S C. Effects of nitrogen rate and split application ratio on nitrogen use and soil nitrogen balance in cotton fields. Pedosphere, 2017, 27: 769-777.
doi: 10.1016/S1002-0160(17)60303-5
[42] Qiao J, Yang L Z, Yan T M, Xue F, Zhao D. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. Eur J Agron, 2013, 49: 93-103.
doi: 10.1016/j.eja.2013.03.008
[1] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[2] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[3] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[4] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
[5] LE Yu, WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu. Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1172-1180.
[6] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, and MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[7] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[8] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Annual yield gap and the causes assessment for rice-rapeseed cropping system: an example from Wuxue city, Hubei province [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[9] CHEN Yu-Zhang, WU Song-Guo, LU Cheng-Lin, LI Rui, GONG Li-Juan, WEN Yue, NING Jia-Xin, WU Yu-Han. Effects of strip-mulching ridges on runoff and soil water use for sorghum in southwest yellow soil slope farmland [J]. Acta Agronomica Sinica, 2024, 50(5): 1325-1340.
[10] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[11] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[12] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[13] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[14] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[15] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .