Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1420-1434.doi: 10.3724/SP.J.1006.2024.33060

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of ZmGRAS13 gene in maize

SHE Meng1,2(), ZHENG Deng-Yu2, KE Zhao2, WU Zhong-Yi2, ZOU Hua-Wen1,*(), ZHANG Zhong-Bao2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-10-18 Accepted:2024-01-12 Online:2024-06-12 Published:2024-02-19
  • Contact: * E-mail: zouhuawen@yangtzeu.edu.cn;E-mail: zhangzhongbao@baafs.net.cn
  • Supported by:
    Beijing Natural Science Foundation(6222009);Beijing Academy of Agricultural and Forestry Sciences(KJCX20230203);Beijing Academy of Agricultural and Forestry Sciences Biotechnology Sharing Platform in 2023

Abstract:

GRAS family is a plant-specific transcription factor, which plays an important role in regulating plant growth and development and responding to stresses. Exploring the function of GRAS family genes in maize (Zea mays L.) provides the important genetic resources for the creation of new maize germplasm. In this study, ZmGRAS13 gene (Zm00001eb401210) was cloned, and its basic characteristics, tissue expression characteristics, and the relative expression patterns under stresses were analyzed by bioinformatics and qRT-PCR. Bioinformatics showed that the full-length coding sequence of this gene was 1638 bp, encoding 545 amino acids. ZmGRAS13 protein had no transmembrane structure, and the molecular weight of 60.79 kD, the theoretical isoelectric point of 5.86, and had a conserved domain unique to the GRAS family. The analysis of 2 kb sequence upstream of the gene promoter indicated that the sequence contained cis-acting elements related to stresses, hormone response, and light response. The qRT-PCR analysis showed that ZmGRAS13 gene was expressed in different tissues of maize, and the relative expression level in stem was the highest. At the same time, the gene has different degrees of induced expression under different abiotic stress treatment conditions. The transient expression experiment of maize protoplasts demonstrated that ZmGRAS13 protein was localized in the nucleus. On 1/2 MS solid medium containing different concentrations of NaCl, mannitol, abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), respectively, the root length of ZmGRAS13 transgenic Arabidopsis lines was significantly longer than the control. In the soil, transgenic Arabidopsis lines grew better than the control under high salt and drought treatments, and the green leaf rate was higher than the control. Compared with the wild type, the content of stress resistance physiological index MDA decreased, the chlorophyll content increased, and the activities of POD and CAT increased in the transgenic ZmGRAS13 Arabidopsis thaliana, and the difference was significant difference. In conclusion, ZmGRAS13 gene may be involved in the regulation of maize growth and development, response to stresses and hormone signal transduction pathway. This study provides an important reference for the further analysis of the biological function of ZmGRAS13 in maize.

Key words: maize, ZmGRAS13, transcription factors, osmotic stress, salt stress, heterologous expression

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5'-3')
pZmGRAS13-FP ACCCGGGCTGCAGAATTCATGCCCATAAAATTTGCACTAG (EcoR I)
pZmGRAS13-RP CATGGTACCCTCGAGAAGCTTGCACCAGGCAGAAGATACGAC (Hind III)
pZmGRAS13RT-FP ATAGGTAGCCCTGACAGTTCCT
pZmGRAS13RT-RP TCCAACATGTAAGCTCCCAGAC
pZmGRAS13T-FP AGGCAGGTAATTGTAGCATG
pZmGRAS13T-RP TCTGTCCAACCATATCCAG
pGAPDHRT-FP
pGAPDHRT-RP
CCCTTCATCACCACGGACTAC
AACCTTCTTGGCACCACCCT
pActin-FP
pActin-RP
TACGAGATGCCTGATGGTCAGGTCA
TGGAGTTGTACGTGGCCTCATGGAC

Fig. 1

Cloning and bioinformatics analysis of ZmGRAS13 gene (a): cloning of ZmGRAS13 gene (M: DL2000 DNA marker; 1, 2: ZmGRAS13 fragments amplified); (b): transmembrane structure prediction; (c): protein spatial structure prediction; (d): protein hydrophobicity prediction; (e): conserved domain prediction; (f): analysis of cis-acting elements in promoter region."

Fig. 2

Relative expression level of ZmGRAS13 gene in different tissues of maize Different lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 3

Relative expression level of the ZmGRAS13 gene under different stress treatments in maize (a)?(d): the relative expression level of ZmGRAS13 genes after dehydration, high salt, osmotic and cold treatments, respectively. (e): the relative expression level of ZmGRAS13 genes after JA, ABA, GA, SA, and 2,4-D treatments; *: P < 0.05; **: P < 0.01."

Fig. 4

Subcellular localization of ZmGRAS13 in maize protoplasts GFP: green fluorescence channel; DAPI: DAPI channel; Bright: bright field channel; Merged: merge of GFP, DAPI and Bright channel; pYBA1132:EGFP: protoplast with empty vector; pYBA1132:ZmGRAS13:EGFP: protoplasts transferred into the target gene."

Fig. 5

Identification of T3 generation ZmGRAS13 transgenic Arabidopsis thaliana (a): PCR identification of T3 transgenic Arabidopsis thaliana (M: DL2000 DNA marker; P: positive control; N: negative control; W: water control); (b): qPCR identification of T3 transgenic Arabidopsis thaliana (WT: wild-type Arabidopsis; L-1-L-7: T3 transgenic Arabidopsis lines); *: P < 0.05; **: P < 0.01."

Fig. 6

Comparison of root length between wild type and transgenic Arabidopsis thaliana under different NaCl and mannitol concentrations (A): a?d: 0, 0.10, 0.15, and 0.18 mol L-1 NaCl treatment of Arabidopsis thaliana growth; e: average main root length of Arabidopsis thaliana. (B): a-d: 0, 0.15, 0.20, and 0.30 mol L-1 mannitol treatment of Arabidopsis thaliana growth; e: the average main root length of Arabidopsis thaliana. WT: wild-type Arabidopsis; L-3, L-5, L-7: ZmGRAS13 transgenic Arabidopsis lines; *: P < 0.05; **: P < 0.01."

Fig. 7

Comparison of root length between wild type and transgenic Arabidopsis thaliana under different ABA, JA, and SA concentrations (A): a-d: 0, 10, 25, and 50 μmol L-1 ABA treatment of Arabidopsis thaliana growth; e: the average main root length of Arabidopsis thaliana. (B): a-d: 0, 50, 75, and 100 μmol L-1 JA treatment of Arabidopsis thaliana growth; e: the average main root length of Arabidopsis thaliana. (C): a-d: 0, 25, 50, and 75 μmol L-1 SA treatment of Arabidopsis thaliana growth; e: the average main root length of Arabidopsis thaliana. Abbreviations are the same as those given in Fig. 6; *: P < 0.05; **: P < 0.01."

Fig. 8

Phenotypic analysis of transgenic Arabidopsis under high salt treatment (a): Arabidopsis phenotype; (b): Green leaf rate after high salt treatment; (c): MDA content; (d): POD activity; (e): chlorophyll content; (f): CAT activity. Abbreviations are the same as those given in Fig. 6; *: P < 0.05; **: P < 0.01."

Fig. 9

Phenotypic analysis of transgenic Arabidopsis under drought treatment (a): Arabidopsis phenotype; (b): Green leaf rate before and after drought treatment; (c): MDA content; (d): POD activity; (e): chlorophyll content; (f): CAT activity. Abbreviations are the same as those given in Fig. 6; *: P < 0.05; **: P < 0.01."

[1] Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation: a review. Plant Biol, 2022, 24: 404-416.
[2] Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683-692.
doi: 10.1007/s00425-004-1203-z pmid: 14760535
[3] Guiltinan M J, Miller L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol, 1994, 26: 1041-1053.
pmid: 7811964
[4] Heery D M, Kalkhoven E, Hoare S, Parker M G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997, 387: 733-736.
[5] Guo Y, Wu H, Li X, Li Q, Zhao X, Duan X, An Y, Lyu W, An H. Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS One, 2017, 12: e0185418.
[6] 张文霞, 刁志娟, 吴为人. 植物GRAS蛋白研究的新进展. 分子植物育种, 2016, 14: 1159-1165.
Zhang W X, Diao Z J, Wu W R. New advances in the study of plant GRAS proteins. Mol Plant Breed, 2016, 14: 1159-1165. (in Chinese with English abstract)
[7] Tian C, Wan P, Sun S, Li J, Chen M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol, 2004, 54: 519-532.
[8] Heo J O, Chang K S, Kim I A, Lee M H, Lee S A, Song S K, Lee M M, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root. Proc Natl Acad Sci USA, 2011, 108: 2166-2171.
[9] Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagio T, Toki S, Shibuya N, Nishizawa Y, Minami E. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotech Bioch, 2016, 80: 145-151.
[10] Mayrose M, Ekengren S K, Melech-Bonfil S, Martin G B, Sessa G. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol, 2006, 7: 593-604.
doi: 10.1111/j.1364-3703.2006.00364.x pmid: 20507472
[11] 周莲洁, 杨中敏, 张富春, 王艳. 新疆盐穗木GRAS转录因子基因克隆及表达分析. 西北植物学报, 2013, 33: 1091-1097.
Zhou L J, Yang Z M, Zhang F Q, Wang Y. Expression analysis and cloning of GRAS transcription factor gene from Halostachys capsica. Acta Bot Boreal-Occident Sin, 2013, 33: 1091-1097. (in Chinese with English abstract)
[12] 郭鹏, 邢新, 金华, 董燕. 玉米ZmSCL7的克隆及功能研究. 中国农业科学, 2013, 46: 2584-2591.
doi: 10.3864/j.issn.0578-1752.2013.12.020
Guo P, Xing X, Jin H, Dong Y. Cloning and functional study of ZmSCL7 in Zea mays. Sci Agric Sin, 2013, 46: 2584-2591. (in Chinese with English abstract)
[13] Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91-94.
doi: 10.1126/science.1118642 pmid: 16400150
[14] Huang W, Xian Z, Kang X, Tang N, Li Z. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol, 2015, 15: 209.
doi: 10.1186/s12870-015-0590-6 pmid: 26302743
[15] Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell, 2008, 20: 2117-2129.
doi: 10.1105/tpc.108.058941 pmid: 18757556
[16] 郭华军. 拟南芥转录因子GRAS家族SCL15基因对干旱胁迫的响应分析. 西北农林科技大学硕士学位论文,陕西杨凌, 2011.
Guo H J. Analysis of Arabidopsis GRAS Family Gene SCL15 Responded to Drought Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2011. (in Chinese with English abstract)
[17] 丁雪峰, 刘鸿艳, 罗利军. 水稻OsGRAS1启动子的克隆及多样性分析. 上海农业学报, 2010, 26(4): 8-14.
Ding X F, Liu H Y, Luo L J. Cloning and diversity analysis of OsGRAS1 promoter in rice. Acta Agric Shanghai, 2010, 26(4): 8-14. (in Chinese with English abstract)
[18] 廖文彬, 彭明. 木薯赤霉素途径DELLA蛋白基因克隆及其对干旱胁迫的响应. 热带生物学报, 2012, 3: 298-304.
Liao W B, Peng M. Gene cloning of DELLA protein from cassava and its expression patterns under drought stress. J Trop Biol, 2012, 3: 298-304. (in Chinese with English abstract)
[19] Weng Y, Chen X, Hao Z, Lu L, Wu X, Zhang J, Wu J, Shi J, Chen J. Genome-wide analysis of the GRAS gene family in Liriodendron chinense reveals the putative function in abiotic stress and plant development. Front Plant Sci, 2023, 14: 1211853.
[20] Battaglia M, Rípodas C, Clúa J, Baudin M, Aguilar O M, Niebel A, Zanetti M E, Blanco F A. A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. Plant Physiol, 2014, 164: 1430-1442.
doi: 10.1104/pp.113.230896 pmid: 24424321
[21] Gobbato E, Marsh J F, Vernié T, Wang E, Maillet F, Kim J, Miller J B, Sun J, Bano S A, Ratet P, Mysore K S, Dénarié J, Schultze M, Oldroyd G E. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol, 2012, 22: 2236-2241.
doi: 10.1016/j.cub.2012.09.044 pmid: 23122845
[22] Bolle C, Koncz C, Chua N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Gene Dev, 2000, 14: 1269-1278.
pmid: 10817761
[23] Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A Signal transduction. Plant Physiol, 2013, 161: 291-304.
doi: 10.1104/pp.112.206607 pmid: 23109688
[24] Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell, 2008, 20: 3122-3135.
[25] Gao M J, Li X, Huang J, Gropp G M, Gjetvaj B, Lindsay D L, Wei S, Coutu C, Chen Z, Wan X C, Hannoufa A, Lydiate D J, Gruber M Y, Chen Z J, Hegedus D D. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nat Commun, 2015, 6: 7243.
[26] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58: 803-816.
[27] Li X, Qian Q, Fu Z, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422: 618-621.
[28] Meng F, Zheng X, Wang J, Qiu T, Yang Q, Fang K, Bhadauria V, Peng Y L, Zhao W. The GRAS protein OsDLA involves in brassinosteroid signalling and positively regulates blast resistance by forming a module with GSK2 and OsWRKY53 in rice. Plant Biotechnol J, 2024, 22: 363-378.
[29] Morohashi K, Minami M, Takase H, Hotta Y, Hiratsuka K. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression. J Biol Chem, 2003, 278: 20865-20873.
doi: 10.1074/jbc.M301712200 pmid: 12657631
[30] Li M, Sun B, Xie F, Gong R, Luo Y, Zhang F, Yan Z, Tang H. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. PeerJ, 2019, 7: e6682.
[31] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 1565-1572.
[32] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[33] Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol, 2015, 15: 141.
doi: 10.1186/s12870-015-0532-3 pmid: 26067440
[34] 王晓冬. 玉米GRAS转录因子基因ZmSCL14功能分析. 山东农业大学硕士学位论文,山东泰安, 2020.
Wang X D. Functional Analysis of Maize GRAS Transcription Factor ZmSCL14 Gene. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2020. (in Chinese with English abstract)
[35] 殷龙飞, 王朝阳, 吴忠义, 张中保, 于荣. 玉米ZmGRAS31基因的克隆及功能研究. 作物学报, 2019, 45: 1029-1037.
doi: 10.3724/SP.J.1006.2019.83070
Yin L F, Wang C Y, Wu Z Y, Zhang Z B, Yu R. Cloning and functional analysis of ZmGRAS31 gene in maize. Acta Agron Sin, 2019, 45: 1029-1037. (in Chinese with English abstract)
[36] Czikkel B E, Maxwell D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol, 2007, 164: 1220-1230.
[37] Ma H S, Liang D, Shuai P, Xia X L, Yin W L. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot, 2010, 61: 4011-4019.
[38] Wang T T, Yu T F, Fu J D, Su H G, Chen J, Zhou Y B, Chen M, Guo J, Ma Y Z, Wei W L, Xu Z S. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Front Plant Sci, 2020, 11: 604690.
[39] Yuan Y, Fang L, Karungo S K, Zhang L, Gao Y, Li S, Xin H. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep, 2016, 35: 655-666.
[40] Zhang S, Li X, Fan S, Zhou L, Wang Y. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 2020, 151: 243-254.
[1] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[2] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with C4-type ZmPEPC+ZmPPDK gene#br# [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[3] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[4] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[5] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[6] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[7] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[8] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[9] SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135.
[10] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[11] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[12] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[13] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[14] XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612.
[15] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .