Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1435-1450.doi: 10.3724/SP.J.1006.2024.33061
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHENG Xue-Qing1(), WANG Xing-Rong2, ZHANG Yan-Jun2, GONG Dian-Ming1,*(
), QIU Fa-Zhan1,*(
)
[1] | Zhang H W, Lu Y T, Ma Y T, Fu J J, Wang G Y. Genetic and molecular control of grain yield in maize. Mol Breed, 2021, 41: 18. |
[2] | 李燕, 谭君, 李红梅, 魏明, 何立群, 赵后娟, 杜林, 刘可心, 邓路长, 杨俊品, 唐海涛. 高赖氨酸玉米F2:3群体穗部性状与产量的相关及通径分析. 安徽农业科学, 2020, 48(8): 41-42. |
Li Y, Tan J, Li H M, Wei M, He L Q, Zhao H J, Du L, Liu K X, Deng L C, Yang J P, Tang H T. Correlation and path analysis of ear character in F2:3 population derived from high lysine content maize hybrid Quanyu No. 9. J Anhui Agric Sci, 2020, 48(8): 41-42. (in Chinese with English abstract) | |
[3] | Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high-density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433. |
[4] | Huo D A, Ning Q, Shen X M, Liu L, Zhang Z X. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One, 2016, 11: e0155506. |
[5] | Chen J F, Zhang L Y, Liu S T, Li Z M, Huang R R, Li Y M, Cheng H L, Li X T, Zhou B, Wu S W, Chen W, Wu J Y, Ding J Q. The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One, 2016, 11: e0153428. |
[6] | Hao D R, Xue L, Zhang Z L, Cheng Y J, Chen G Q, Zhou G F, Li P C, Yang Z F, Xu C W. Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. Breed Sci, 2019, 69: 420-428. |
[7] |
Liu C L, Zhou Q, Dong L, Wang H, Liu F, Weng J F, Li X H, Xie C X. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics, 2016, 17: 915.
pmid: 27842488 |
[8] |
Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L, Zhang Y L, Zou C Y, Lin H J, Gao S B, Lee M, Lübberstedt T, Pan G T, Shen Y O. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.
doi: 10.1111/pbi.13188 pmid: 31199064 |
[9] | Yang C, Zhang L, Jia A M, Rong T Z. Identification of QTL for maize kernel yield and kernel-related traits. J Genet, 2016, 95: 239-247. |
[10] | Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511-526. |
[11] |
Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, Li W Q, Liu L, Jackson D, Yan J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052-1059.
doi: 10.1038/s41588-019-0427-6 pmid: 31152161 |
[12] |
Bernardi J, Lanubile A, Li Q B, Kumar D, Kladnik A, Cook S D, Ross J J, Marocco A, Chourey P S. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol, 2012, 160: 1318-1328.
doi: 10.1104/pp.112.204743 pmid: 22961134 |
[13] | 席先梅. 基于导入系群体玉米遗传图谱构建及重要农艺性状QTL定位. 内蒙古农业大学博士学位论文,内蒙古呼和浩特, 2018. |
Xi X M. Construction of Genetic Linkage Map and Identification of QTLs for Important Agronomic Traits in Introgression Lines of Maize. PhD Dissertation of Graduate School of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract) | |
[14] |
Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 pmid: 28811335 |
[15] |
Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788.
doi: 10.3389/fpls.2020.00788 pmid: 32793248 |
[16] |
Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet, 2020, 133: 2881-2895.
doi: 10.1007/s00122-020-03639-4 pmid: 32594266 |
[17] |
Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Front Plant Sci, 2017, 8: 2190.
doi: 10.3389/fpls.2017.02190 pmid: 29312420 |
[18] | 郭海平. 玉米穗粗主效 QTL qED3 的精细定位和候选基因克隆. 河南农业大学硕士学位论文,河南郑州, 2018. |
Guo H P. Fine Mapping and Cloning of the Ear Diameter QTL qED3 in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract). | |
[19] |
涂亮, 高媛, 刘鹏飞, 郭向阳, 王安贵, 何兵, 刘颖, 祝云芳, 吴迅, 陈泽辉. 玉米穗长主效QTL q21EL-GZ 的精细定位. 植物遗传资源学报, 2021, 22: 1394-1401.
doi: 10.13430/j.cnki.jpgr.20210302001 |
Tu L, Gao Y, Liu P F, Guo X Y, Wang A G, He B, Liu Y, Zhu Y F, Wu X, Chen Z H. Fine mapping of the ear length major QTL q21EL-GZ in maize. J Plant Genet Res, 2019, 22: 1394-1401. (in Chinese with English abstract) | |
[20] | 赵强. 基于两个F2:3家系的玉米产量相关性状QTL定位及候选基因分析. 贵州大学硕士学位论文,贵州贵阳, 2020. |
Zhao Q. QTL Mapping and Candidate Gene Analysis of Maize Yield-Related Traits by Using Two Maize F2:3 Families. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2020. (in Chinese with English abstract) | |
[21] | 赵强, 陈柔屹, 王安贵, 郭向阳, 刘鹏飞, 祝云芳, 吴迅, 陈泽辉. 基于高密度 SNP 标记对玉米穗部相关性状的QTL定位及候选基因分析. 玉米科学, 2021, 29(3): 36-41. (in Chinese with English abstract) |
Zhao Q, Chen R Y, Wang A G, Guo X Y, Liu P F, Zhu Y F, Wu X, Chen Z H. QTL mapping and candidate gene analysis about ear-related traits in maize based on high density SNP markers. J Maize Sci, 2012, 29(3): 36-41. (in Chinese with English abstract) | |
[22] |
Gong D M, Tan Z D, Zhao H L, Pan Z Y, Sun Q, Qiu F Z. Fine mapping of a kernel length-related gene with potential value for maize breeding. Theor Appl Genet, 2021, 134: 1033-1045.
doi: 10.1007/s00122-020-03749-z pmid: 33459823 |
[23] | Han X S, Qin Y, Sandrine AMN, Qiu F Z. Fine mapping of qKRN8, a QTL for maize kernel row number, and prediction of the candidate gene. Theor Appl Genet, 2020, 133: 3139-3150. |
[24] |
Huang J, Lu G, Liu L, Raihan M S, Xu J T, Jian L M, Zhao L X, Tran T M, Zhang Q H, Liu J, Li W Q, Wei C X, Braun D M, Li Q, Fernie A R, Jackson D, Yan J B. The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and kernel filling. Plant Physiol, 2020, 183: 1696-1709.
doi: 10.1104/pp.20.00374 pmid: 32482908 |
[25] | Li W L, Bai Q H, Zhan W M, Ma C Y, Wang S Y, Feng Y Y, Zhang M D, Zhu Y, Cheng M, Xi Z Y. Fine mapping and candidate gene analysis of qhkw5-3, a major QTL for kernel weight in maize. Theor Appl Genet, 2019, 132: 2579-2589. |
[26] | Nie N N, Ding X Y, Chen L, Wu X, An Y X, Li C H, Song Y C, Zhang D F, Liu Z Z, Wang T Y, Li Y, Li Y X, Shi Y S. Characterization and fine mapping of qkrnw4, a major QTL controlling kernel row number in maize. Theor Appl Genet, 2019, 132: 3321-3331. |
[27] | Wang G Y, Zhao Y M, Mao W B, Ma X J, Su C F. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front Genet, 2020, 11: 603920. |
[28] | Wang C, Li H G, Long Y, Dong Z Y, Wang J H, Liu C, Wei X, Wan X Y. A systemic investigation of genetic architecture and gene resources controlling kernel size-related traits in maize. Int J Mol Sci, 2023, 24: 1025. |
[29] |
Wang J, Lin Z L, Zhang X, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Lin Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytol, 2019, 223: 1634-1646.
doi: 10.1111/nph.15890 pmid: 31059135 |
[30] | Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, Yan J, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526. |
[31] | Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11: e1005670. |
[32] |
Chen L, Li Y X, Li C, Shi Y, Song Y, Zhang D, Wang H, Li Y, Wang T. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnol J, 2020, 18: 1004-1014.
doi: 10.1111/pbi.13267 pmid: 31553822 |
[33] |
Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988.
doi: 10.1038/s41467-020-14746-7 pmid: 32080171 |
[34] |
Ning Q, Jian Y N, Du Y F, Li Y F, Shen X M, Jia H T, Zhao R, Zhan J M, Yang F, Jackson D, Liu L, Zhang Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun, 2021, 12: 5832.
doi: 10.1038/s41467-021-26123-z pmid: 34611160 |
[35] |
Sun Q, Li Y F, Gong D M, Hu A Q, Zhong W S, Zhao H L, Ning Q, Tan Z D, Liang K, Mu L Y, Jackson D, Zhang Z X, Yang F, Qiu F Z. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun, 2022, 13: 5708.
doi: 10.1038/s41467-022-33513-4 pmid: 36175574 |
[36] | Zhang S, Deng L, Cheng R, Hu J, Wu C Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. J Integr Plant Biol, 2022, 64: 149-165. |
[37] | Stelpflug S C, Sekhon R S, Vaillancourt B, Hirsch C N, Buell C R, de Leon N, Kaeppler S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9: plantgenome2015.04.0025. |
[38] |
Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353: 814-818.
doi: 10.1126/science.aag1125 pmid: 27540173 |
[39] | Ohta M, Takaiwa F. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. J Plant Physiol, 2020, 245: 153109. |
[40] | Scholl S, Hillmer S, Krebs M, Schumacher K. ClCd and ClCf act redundantly at the trans-Golgi network/early endosome and prevent acidification of the Golgi stack. J Cell Sci, 2021, 134: jcs258807. |
[41] |
Derkacheva M, Liu S J, Figueiredo D D, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L. H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. Nat Plants, 2016, 2: 16126.
doi: 10.1038/nplants.2016.126 pmid: 27525512 |
[42] | Cui X, Lu F L, Li Y, Xue Y M, Kang Y Y, Zhang S B, Qiu Q, Cui X K, Zheng S Z, Liu B, Xu X D, Cao X F. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol, 2013, 162: 897-906. |
[1] | FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with C4-type ZmPEPC+ZmPPDK gene#br# [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657. |
[2] | HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718. |
[3] | QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations. This study was supported by the Major Science and Technology of Henan Province Project “The Wheat Nutrigenomics Analysis and Functional Food Creation and Industrialization Fund Project” (231100110300), and the Shennong Laboratory “first-class subject” project (SN01-2022-01). [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683. |
[4] | WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876. |
[5] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[6] | MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405. |
[7] | WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627. |
[8] | SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434. |
[9] | WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324. |
[10] | TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123. |
[11] | SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135. |
[12] | WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114. |
[13] | HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222. |
[14] | ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042. |
[15] | LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980. |
|