Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1435-1450.doi: 10.3724/SP.J.1006.2024.33061

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of QTL for ear-related traits and prediction of key candidate genes in maize

ZHENG Xue-Qing1(), WANG Xing-Rong2, ZHANG Yan-Jun2, GONG Dian-Ming1,*(), QIU Fa-Zhan1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
    2Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2023-10-25 Accepted:2024-01-12 Online:2024-06-12 Published:2024-02-19
  • Contact: * E-mail: gongdianming@mail.hzau.edu.cn;E-mail: qiufazhan@mail.hzau.edu.cn
  • Supported by:
    Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology(2022EEDSKJXM011);Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology(2022EEDSKJXM011-1);National Key Research and Development Program of Shandong Province(2022CXPT014)

Abstract:

Maize ear related traits are directly related to yield, and the analysis of their genetic basis is of great significance for guiding maize genetic improvement. In this study, the phenotypic characteristics of eight traits were identified in 168 high generation backcross recombinant inbred lines (AB-RILs) in six environments over three years. QTLs for eight traits were mapped with 11,407 SNP markers generated by 10 K liquid chip in maize. A total of 32 QTL related to eight ear traits were identified in this study, including five environmentally consistent QTLs and three pleiotropic QTL. Further, we used the genotypic and phenotypic data of 507 maize inbred lines to analyze the candidate regions of major QTL and identified 19 candidate genes that might be related to ear shape. We finally speculated four genes as candidate genes based on the analysis of evolution and expression of the genes. These results provide the important marker information for the genetic improvement of ear traits in maize breeding and offered guidance for the cloning of genes related to ear traits.

Key words: maize, AB-RIL population, ear, kernel, QTL mapping, candidate regional association analysis

Table 1

Investigation methods for each trait"

性状
Trait
测定方法
Assessment
单位
Unit
穗长EL 果穗顶部到基部的长度 The length of a maize ear from ear top to ear base. cm
穗行数ER 果穗籽粒的行数 The ear row number of a maize ear.
穗粗ED 果穗中下部(约2/3处)的直径 The ear diameter in the lower-middle part (about two thirds) of maize ear. cm
轴粗CD 果穗中下部(约2/3处)穗轴的直径 The cob diameter in the lower-middle part (about two thirds) of maize cob. cm
粒长KL 1/2(ED-CD) cm
粒宽KW Pi(π)×ED/ER cm
粒厚KT 果穗中部随机挑取5颗籽粒, 测定其厚度
We randomly selected 5 seeds from the middle of the maize ear and measured their thickness.
cm
百粒重HKW 果穗中部的籽粒中随机挑取100粒, 测定其总重量
We randomly selected 100 seeds from the middle of the maize ear and measured their weight.
g

Fig. 1

Correlation analysis between environments for every trait and frequency distribution for each trait in all environments *: P<0.05, **: P<0.01, ***: P<0.001. Fig. A shows ear length; Fig. B shows ear row number; Fig. C shows ear diameter; Fig. D shows cob diameter; Fig. E shows kernel length; Fig. F shows kernel width; Fig. G shows kernel thickness and Fig. H shows hundred-kernel weight. 2019HB represents Hubei environment in 2019, 2019SD represents Shandong environment in 2019, and 2020HN represents Hainan environment in 2020, 2021HB represents Hubei environment in 2021 and 2021SD represents Shandong environment in 2021."

Table 2

Description statistical results of the AB-RILs and their parents in all environments"

性状
Trait
HL-1 HL-4 AB-RILs
平均值±标准差
Mean±SD
平均值±标准差Mean±SD 最小值
Min.
最大值
Max.
平均值±标准差Mean±SD 偏度
Skewness
峰度
Kurtosis
EL (cm) 14.08±1.97 10.05±1.52 5.50 21.30 11.02±1.92 0.43 0.64
ER 16.29±1.39 20.06±1.90 10.00 30.00 18.02±2.70 0.21 0.02
ED (cm) 4.77±0.40 4.13±0.24 2.92 5.72 4.19±0.38 0.13 0.21
CD (cm) 2.86±0.20 2.62±0.21 1.75 3.87 2.58±0.27 0.55 0.86
KL (cm) 0.95±0.15 0.75±0.11 0.34 1.50 0.81±0.13 -0.09 0.14
KW (cm) 0.92±0.10 0.65±0.06 0.46 1.18 0.74±0.10 0.65 0.71
KT (cm) 0.42±0.03 0.38±0.03 0.26 0.64 0.40±0.05 0.56 1.06
HKW (g) 29.94±4.19 15.74±3.66 6.72 35.90 19.58±4.43 0.14 -0.19

Fig. 2

Correlation analysis between traits in every environment *: P < 0.05; **: P < 0.01; ***: P < 0.001. Abbreviations are the same as those given in Table 1. A: Hubei environment in 2019; B: Shandong environment in 2019; C: Hainan environment in 2020; D: Shandong environment in 2020; E: Hubei environment in 2021; F: Shandong environment in 2021."

Table 3

Heritability analysis of traits in all environments"

环境
Environment
穗长
EL
穗行数
ER
穗粗
ED
轴粗
CD
粒长
KL
粒宽
KW
粒厚
KT
百粒重
HKW
2019湖北 2019HB 0.900 0.941 0.897 0.910 0.865 0.945 0.887 0.915
2019山东 2019SD 0.888 0.897 0.888 0.904 0.768 0.882 0.887 0.896
2020山东 2020SD 0.966 0.960 0.960 0.971 0.922 0.955 0.951 0.956
2020海南 2020HN 0.942 0.950 0.955 0.960 0.904 0.925 0.943 0.954
2021湖北 2021HB 0.945 0.937 0.940 0.941 0.905 0.923 0.881 0.911
2021山东 2021SD 0.941 0.936 0.952 0.940 0.908 0.924 0.909 0.917
多环境Multiple environments 0.784 0.853 0.792 0.838 0.697 0.846 0.745 0.751

Fig. 3

Bin-map derived from AB-RILs A: binmarker consistent with HL-1 genotype; B: binmarker consistent with HL-4 genotype; H: heterozygous binmarker."

Table 4

Characteristics of the high-density genetic map derived from AB-RILs"

染色体
Chr.
Bin标记
Bin-marker
物理距离
Physical distance (Mb)
遗传距离
Genetic distance
(cM)
标记间的平均距离
Average distance between markers (cM)
小于5 cM的间距数
< 5 cM gap
最大的间距
Max. gap (cM)
1 324 306.26 237.77 0.74 323 4.30
2 255 244.41 171.70 0.68 254 2.90
3 278 234.80 204.95 0.74 277 3.17
4 260 245.96 215.26 0.83 259 3.95
5 232 223.30 175.63 0.76 231 3.58
6 158 172.60 117.26 0.75 157 4.80
7 139 180.84 109.31 0.79 138 3.96
8 127 180.30 110.29 0.88 126 3.31
9 173 158.56 127.02 0.74 172 4.27
10 132 149.96 99.23 0.76 131 3.57
合计Total 2078 2096.99 1568.42 0.767 2068 4.80

Fig. 4

Genetic vs. physical distance plot derived from AB-RILs The abscissa axis represents the physical distance and the vertical axis represents the genetic distance; the positions of the karyotypes are between the two dashed black lines in the figure and abbreviations of chromosomes are the same as those given in Fig. 3."

Table 5

Summary of QTL information in six environments"

性状
Trait name
QTL 环境
Environment
染色体
Chr.
左侧位置
Left marker
(bp)
右侧位置
Right marker
(bp)
区间大小
Interval
(Mb)
LOD 表型贡献率
PVE
(%)
加性效应
Add.
轴粗 qCD-1 2021HB 1 54,939,430 62,115,356 7.18 3.87 7.75 0.07
CD (cm) qCD-4-1 2020SD 4 205,018,080 208,958,555 3.94 3.72 15.64 0.11
qCD-4-2 2021HB 4 192,997,278 196,677,405 3.04 5.49 11.17 0.10
qCD-5 2021HB 5 186,597,846 188,359,476 1.76 4.11 8.20 -0.07
qCD-6-1 2021HB 6 135,424,426 137,064,298 1.64 3.48 6.92 0.07
qCD-6-2 2021SD 6 121,297,726 122,580,268 1.28 4.12 12.18 0.11
穗粗 qED-4 2021HB 4 192,997,278 196,677,405 3.04 4.64 10.34 0.14
ED (cm) qED-6 2021SD 6 112,313,105 114,094,970 1.78 4.48 11.43 0.14
穗长 qEL-2 2020HN 2 236,095,548 238,255,788 2.16 6.07 12.16 -0.90
EL (cm) qEL-3 2021SD 3 185,984,247 191,410,788 5.43 5.79 12.39 -0.67
qEL-5 2020HN 5 11,628,082 13,586,282 1.96 4.17 8.63 -0.88
穗行数 qER-2 2021HB/2021SD 2 6,991,776 9,084,154 2.09 5.83/5.29 8.22/5.31 -0.95/-0.99
ER qER-4-1 2019SD/2021HB 4 13,661,289 17,219,642 3.56 3.64/3.98 10.89/5.46 -0.71/-0.80
qER-4-2 2021HB/2021SD 4 199,271,470 210,177,012 10.91 9.57/8.48 13.75/8.27 1.25/-1.24
qER-10-1 2020SD 10 9,126,644 22,985,297 13.86 7.21 15.44 -1.26
qER-10-2 2021SD 10 139,905,250 142,678,402 2.77 3.93 4.32 -0.98
百粒重 qHKW-1 2019HB 1 46,731,254 51,419,220 4.69 4.03 13.42 1.40
HKW(g) qHKW-4 2020SD 4 69,806,390 77,312,272 7.51 3.71 8.80 1.36
qHKW-10 2021SD 10 139,905,250 142,678,402 2.77 4.16 11.72 1.11
粒长 qKL-3 2020HN 3 229,824,448 231,520,846 1.70 3.73 13.04 -0.10
KL (cm) qKL-9-1 2019SD 9 14,303,995 16,923,756 2.62 4.57 11.96 0.03
qKL-9-2 2021HB 9 17,738,298 28,246,816 10.51 3.55 10.14 0.03
粒厚 qKT-1 2021HB 1 246,403,964 250,906,206 4.50 5.28 1.47 0.01
KT (cm) qKT-2 2020SD 2 194,189,434 195,416,628 1.23 5.25 13.12 0.02
qKT-8 2021HB 8 71,183,518 93,850,416 22.67 3.62 1.01 0.01
qKT-9-1 2020HN/2021HB 9 16,211,720 30,377,062 14.17 13.68/40.45 17.20/20.76 -0.05/-0.05
qKT-9-2 2020HN 9 107,672,078 113,681,932 6.01 7.21 8.00 0.03
粒宽
KW (cm)
qKW-4 2019SD/2020SD/
2021HB/2021SD
4 13,938,960 17,761,802 3.82 5.16/5.68/
4.74/7.51
14.30/9.77/
13.51/13.97
0.03/0.04/
0.03/0.04
qKW-7-1 2020SD 7 143,358,324 146,209,696 2.85 3.88 13.51/13.97 -0.03
qKW-7-2 2020SD 7 154,455,636 159,145,141 4.69 6.76 6.46 0.04
qKW-10-1 2020HN 10 4,574,144 12,475,578 7.90 4.89 11.97 0.05
qKW-10-2 2021SD 10 133,521,996 136,947,954 3.43 3.58 16.01 0.03

Fig. 5

Summary of QTL information in all environments Abbreviations of environments and chromosomes are the same as those given in Figs. 1 and 3, respectively."

Table 6

Genes information from candidate regional association analysis"

基因
Gene
染色体
Chr.
功能注释
Function annotation
QTL
Zm00001d002168 2 Receptor-like serine/threonine-protein kinase SD1-8 qER-2
Zm00001d002177 2 NA qER-2
Zm00001d002184 2 Peroxisome biogenesis protein 22 qER-2
Zm00001d002185 2 Histone-lysine N-methyltransferase qER-2
Zm00001d042998 3 UPF0051 protein ABCI8 chloroplastic qEL-3
Zm00001d043036 3 lbd20-LBD-transcription factor 20 qEL-3
Zm00001d052570 4 Cation-chloride cotransporter 1 qCD-4-2/qED-4
Zm00001d052605 4 Serine-rich adhesin for platelets qCD-4-2
Zm00001d052845 4 P-loop containing nucleoside triphosphate hydrolases superfamily protein qER-4-2
Zm00001d052911 4 RWD domain-containing protein qER-4-2
Zm00001d052918 4 Ubiquitin-protein ligase/ zinc ion binding protein qER-4-2
Zm00001d052943 4 Ubiquitin carboxyl-terminal hydrolase 13 qER-4-2
Zm00001d026223 10 Hydrogen peroxide-induced 1 qHKW-10
Zm00001d026250 10 Xyloglucan endotransglucosylase/hydrolase protein 24 qHKW-10
Zm00001d023503 10 G-type lectin S-receptor-like serine/threonine-protein kise qKW-10-1
Zm00001d023537 10 Chaperone protein dJ GFA2 mitochondrial qER-10-1
Zm00001d023582 10 L-ascorbate peroxidase S chloroplastic/mitochondrial qER-10-1
Zm00001d023710 10 Small R degrading nuclease 5 qER-10-1
Zm00001d023718 10 Flavin monooxygese qER-10-1

Fig. 6

Candidate interval association analysis The black solid lines represent thresholds (threshold equal to ?log10 (0.01/N)) in the figure. Dots in the warm color system represent significant markers (SNP or InDel) located in gene regions, and the same color in the warm color indicates markers located in the same gene region."

Fig. 7

QTL comparison of this study with the previous mapping results Red colored words are QTL of this study, blue colored words are MQTL of the paper by Chen et al., green colored words are QTL of the study published since from 2017, purple colored words are QTL of the study by Wang et al., and the red dashed box is the interval-consistent QTL site. The five-pointed stars represent the cloned genes related to yield related traits (B73 RefGen_V4 genome) [29?????-35]."

Table 7

Summary of cloned important QTLs and genes for maize yield related traits"

QTL 基因
Gene
染色体
Chr.
基因描述
Gene description
参考文献
Reference
krn1 krn1 (Zm00001d034629) 1 It regulates spikelet pair meristem numbers and then enhanced kernel row numbers. [29]
qEL1 YIGE1 (Zm00001d028915) 1 It regulates ear length and kernel number per row by affecting female inflorescence number involving the signaling pathways of sugar and auxin. [30]
KRN4 KRN4 4 KRN4 regulates the variation of maize ear row number by regulating the expression of UB3 gene. [31]
qKM4.08 ZmVPS29 (Zm00001d053371) 4 It is involved in kernel morphology variance. [32]
qKNR6 KNR6 (Zm00001d036602) 6 It determines pistillate floret number and ear length. [33]
qEL7 ZmACO2 (Zm00001d020686) 7 It negatively controls ear length and yield. [34]
qKW9 qKW9 (Zm00001d048451) 9 It is involved in kernel weight variation. [24]
HKW9 ZmExpb15 (Zm00001d045861) 9 It controls kernel size and weight by promoting nucellus elimination. [35]

Fig. 8

Phylogenetic tree analysis and expression analysis of four candidate genes A-D indicate the phylogenetic analysis of Zm00001d002185, Zm00001d023537, Zm00001d052845, and Zm00001d052943 in Zea mays, Oryza sativa, and Arabidopsis thaliana, respectively; E-F indicate the relative expression level of Zm00001d002185, Zm00001d023537, Zm00001d052845, and Zm00001d052943 in pollinated embryo, pollinated endosperm, nopollinated internode, no-pollinated leaf, pollinated internode, pollinated leaf, pollinated whole seed, and ear primordium, respectively."

Table S1

Summary of 507 maize inbred lines"

序号
No.
名称
Name
来源
Origin
序号
No.
名称
Name
来源
Origin
序号
No.
名称
Name
来源
Origin
1 150 China 171 CIMBL59 CIMMYT 341 GEMS40 USA
2 177 China 172 CIMBL6 CIMMYT 342 GEMS41 USA
3 238 China 173 CIMBL60 CIMMYT 343 GEMS42 USA
4 268 China 174 CIMBL61 CIMMYT 344 GEMS43 USA
5 501 China 175 CIMBL62 CIMMYT 345 GEMS44 USA
6 647 China 176 CIMBL63 CIMMYT 346 GEMS45 USA
7 812 China 177 CIMBL65 CIMMYT 347 GEMS46 USA
8 832 China 178 CIMBL66 CIMMYT 348 GEMS47 USA
9 1323 China 179 CIMBL67 CIMMYT 349 GEMS48 USA
10 3411 China 180 CIMBL68 CIMMYT 350 GEMS49 USA
11 5237 China 181 CIMBL69 CIMMYT 351 GEMS5 USA
12 5311 China 182 CIMBL7 CIMMYT 352 GEMS50 USA
13 7327 China 183 CIMBL70 CIMMYT 353 GEMS51 USA
14 8902 China 184 CIMBL71 CIMMYT 354 GEMS52 USA
15 9642 China 185 CIMBL72 CIMMYT 355 GEMS53 USA
16 9782 China 186 CIMBL73 CIMMYT 356 GEMS54 USA
17 81162 China 187 CIMBL74 CIMMYT 357 GEMS55 USA
18 526018 China 188 CIMBL75 CIMMYT 358 GEMS56 USA
19 04K5672 China 189 CIMBL76 CIMMYT 359 GEMS57 USA
20 04K5686 China 190 CIMBL77 CIMMYT 360 GEMS58 USA
21 04K5702 China 191 CIMBL78 CIMMYT 361 GEMS59 USA
22 05W002 China 192 CIMBL79 CIMMYT 362 GEMS6 USA
23 05WN230 China 193 CIMBL8 CIMMYT 363 GEMS60 USA
24 07KS4 China 194 CIMBL80 CIMMYT 364 GEMS61 USA
25 18-599 China 195 CIMBL81 CIMMYT 365 GEMS62 Latin America (Cuba)
26 303WX China 196 CIMBL82 CIMMYT 366 GEMS63 USA
27 384-2 China 197 CIMBL83 CIMMYT 367 GEMS64 USA
28 3H-2 China 198 CIMBL84 CIMMYT 368 GEMS65 Latin America (Cuba)
29 4F1 China 199 CIMBL85 CIMMYT 369 GEMS66 Latin America (Cuba)
30 7884-4HT China 200 CIMBL86 CIMMYT 370 GEMS9 USA
31 835B China 201 CIMBL87 CIMMYT 371 GY1032 China
32 975-12 China 202 CIMBL88 CIMMYT 372 GY220 China
33 A619 USA 203 CIMBL89 CIMMYT 373 GY237 China
34 B11 China 204 CIMBL9 CIMMYT 374 GY386 China
35 B110 China 205 CIMBL90 CIMMYT 375 GY386B China
36 B111 China 206 CIMBL91 CIMMYT 376 GY462 China
37 B113 China 207 CIMBL92 CIMMYT 377 GY798 China
38 B114 China 208 CIMBL93 CIMMYT 378 GY923 China
39 B151 China 209 CIMBL94 CIMMYT 379 H21 China
40 B73 China 210 CIMBL95 CIMMYT 380 HB China
41 B77 China 211 CIMBL96 CIMMYT 381 HSBN China
42 BEM China 212 CIMBL97 CIMMYT 382 HTH-17 China
43 BGY China 213 CIMBL98 CIMMYT 383 HUA83-2 China
44 BK Peru 214 CIMBL99 CIMMYT 384 HUANGC China
45 BS16 China 215 CML113 CIMMYT 385 HYS China
46 BT1 China 216 CML114 CIMMYT 386 HZS China
47 BY4839 China 217 CML115 CIMMYT 387 IRF291 China
48 BY4944 China 218 CML115 CIMMYT 388 IRF314 China
49 BY4960 China 219 CML118 CIMMYT 389 JH59 China
50 BY804 China 220 CML121 CIMMYT 390 JH96C China
51 BY807 China 221 CML122 CIMMYT 391 JI53 China
52 BY809 China 222 CML130 CIMMYT 392 JI63 China
53 BY813 China 223 CML134 CIMMYT 393 JI842 China
54 BY815 China 224 CML139 CIMMYT 394 JI846 China
55 BY843 China 225 CML162 CIMMYT 395 JI853 China
56 BY855 China 226 CML163 CIMMYT 396 JIAO51 China
57 BZN China 227 CML165 CIMMYT 397 JING24 China
58 C8605 China 228 CML168 CIMMYT 398 JING724 China
59 CF3 China 229 CML169 CIMMYT 399 JY01 China
60 CHANG3 China 230 CML170 CIMMYT 400 K10 China
61 CHANG7-2 China 231 CML171 CIMMYT 401 K12 China
62 CHENG698 China 232 CML172 CIMMYT 402 K22 China
63 CHUAN48-2 China 233 CML189 CIMMYT 403 L3180 China
64 CI7 USA 234 CML191 CIMMYT 404 LG001 China
65 CIMBL1 USA 235 CML192 CIMMYT 405 LIAO138 China
66 CIMBL10 CIMMYT 236 CML20 CIMMYT 406 LIAO159 China
67 CIMBL100 CIMMYT 237 CML223 CIMMYT 407 LIAO5114 China
68 CIMBL101 CIMMYT 238 CML225 CIMMYT 408 LIAO5262 China
69 CIMBL102 CIMMYT 239 CML226 CIMMYT 409 LIAO5263 China
70 CIMBL104 CIMMYT 240 CML228 CIMMYT 410 LK11 China
71 CIMBL105 CIMMYT 241 CML229 CIMMYT 411 LV28 China
72 CIMBL106 CIMMYT 242 CML27 CIMMYT 412 LXN China
73 CIMBL107 CIMMYT 243 CML28 CIMMYT 413 LY China
74 CIMBL108 CIMMYT 244 CML282 CIMMYT 414 LY042 China
75 CIMBL11 CIMMYT 245 CML285 CIMMYT 415 M153 China
76 CIMBL110 CIMMYT 246 CML286 CIMMYT 416 M165 China
77 CIMBL111 CIMMYT 247 CML287 CIMMYT 417 M97 China
78 CIMBL112 CIMMYT 248 CML289 CIMMYT 418 MN China
79 CIMBL113 CIMMYT 249 CML29 CIMMYT 419 MO17 China
80 CIMBL114 CIMMYT 250 CML290 CIMMYT 420 NAN21-3 China
81 CIMBL115 CIMMYT 251 CML298 CIMMYT 421 NMJT China
82 CIMBL116 CIMMYT 252 CML300 CIMMYT 422 P138 China
83 CIMBL117 CIMMYT 253 CML305 CIMMYT 423 P178 China
84 CIMBL118 CIMMYT 254 CML307 CIMMYT 424 Ph6WC USA(Pioneer)
85 CIMBL119 CIMMYT 255 CML31 CIMMYT 425 Ph4CV USA(Pioneer)
86 CIMBL120 CIMMYT 256 CML32 CIMMYT 426 Q1261 China
87 CIMBL121 CIMMYT 257 CML323 CIMMYT 427 QI205 China
88 CIMBL122 CIMMYT 258 CML324 CIMMYT 428 QI319 China
89 CIMBL123 CIMMYT 259 CML325 CIMMYT 429 R08 China
90 CIMBL124 CIMMYT 260 CML326 CIMMYT 430 R15 China
91 CIMBL125 CIMMYT 261 CML327 CIMMYT 431 R15X1141 China
92 CIMBL126 CIMMYT 262 CML338 CIMMYT 432 RY684 China
93 CIMBL127 CIMMYT 263 CML360 CIMMYT 433 RY697 China
94 CIMBL128 CIMMYT 264 CML361 CIMMYT 434 RY713 China
95 CIMBL129 CIMMYT 265 CML364 CIMMYT 435 RY729 China
96 CIMBL13 CIMMYT 266 CML40 CIMMYT 436 RY732 China
97 CIMBL130 CIMMYT 267 CML408 CIMMYT 437 RY737 China
98 CIMBL131 CIMMYT 268 CML411 CIMMYT 438 S22 China
99 CIMBL132 CIMMYT 269 CML415 CIMMYT 439 S22 China
100 CIMBL133 CIMMYT 270 CML422 CIMMYT 440 S37 China
101 CIMBL134 CIMMYT 271 CML423 CIMMYT 441 SC55 USA
102 CIMBL135 CIMMYT 272 CML426 CIMMYT 442 SHEN137 China
103 CIMBL136 CIMMYT 273 CML428 CIMMYT 443 SHEN5003 China
104 CIMBL137 CIMMYT 274 CML431 CIMMYT 444 SI273 China
105 CIMBL138 CIMMYT 275 CML432 CIMMYT 445 SI434 China
106 CIMBL139 CIMMYT 276 CML451 CIMMYT 446 SI446 China
107 CIMBL14 CIMMYT 277 CML454 CIMMYT 447 SK China
108 CIMBL140 CIMMYT 278 CML465 CIMMYT 448 SW1611 China
109 CIMBL141 CIMMYT 279 CML468 CIMMYT 449 SW92E114 China
110 CIMBL142 CIMMYT 280 CML470 CIMMYT 450 SY1032 China
111 CIMBL143 CIMMYT 281 CML471 CIMMYT 451 SY1035 China
112 CIMBL144 CIMMYT 282 CML479 CIMMYT 452 SY1039 China
113 CIMBL145 CIMMYT 283 CML480 CIMMYT 453 SY1052 China
114 CIMBL146 CIMMYT 284 CML486 CIMMYT 454 SY1077 China
115 CIMBL147 CIMMYT 285 CML493 CIMMYT 455 SY3073 China
116 CIMBL148 CIMMYT 286 CML496 CIMMYT 456 SY998 China
117 CIMBL149 CIMMYT 287 CML497 CIMMYT 457 SY999 China
118 CIMBL15 CIMMYT 288 CML50 CIMMYT 458 TIAN77 China
119 CIMBL150 CIMMYT 289 CML51 CIMMYT 459 TIE7922 China
120 CIMBL151 CIMMYT 290 CML69 CIMMYT 460 TT16 China
121 CIMBL152 CIMMYT 291 CY72 China 461 TX5 China
122 CIMBL153 CIMMYT 292 D047 China 462 TY1 China
123 CIMBL154 CIMMYT 293 D863F China 463 TY10 China
124 CIMBL155 CIMMYT 294 DAN3130 China 464 TY11 China
125 CIMBL156 CIMMYT 295 DAN340 China 465 TY2 China
126 CIMBL157 CIMMYT 296 DAN360 China 466 TY3 China
127 CIMBL16 CIMMYT 297 DAN4245 China 467 TY4 China
128 CIMBL17 CIMMYT 298 DAN598 China 468 TY5 China
129 CIMBL18 CIMMYT 299 DAN599 China 469 TY6 China
130 CIMBL19 CIMMYT 300 DAN9046 China 470 TY7 China
131 CIMBL2 Thailand 301 DE.EX USA 471 TY8 China
132 CIMBL20 CIMMYT 302 DH29 China 472 TY9 China
133 CIMBL21 CIMMYT 303 DH3732 China 473 U8112 China
134 CIMBL22 CIMMYT 304 DONG237 China 474 W138 China
135 CIMBL23 CIMMYT 305 DONG46 China 475 WH413 China
136 CIMBL25 CIMMYT 306 DSB China 476 WMR China
137 CIMBL26 CIMMYT 307 E28 Unknown 477 WU109 China
138 CIMBL27 CIMMYT 308 EN25 China 478 Xi502 China
139 CIMBL28 CIMMYT 309 ES40 China 479 Xun971 China
140 CIMBL3 Thailand 310 FCD0602 China 480 XZ698 China
141 CIMBL30 CIMMYT 311 GEMS1 Latin America (Peru) 481 YAN414 China
142 CIMBL31 CIMMYT 312 GEMS10 USA 482 YE478 China
143 CIMBL32 CIMMYT 313 GEMS11 USA 483 YE488 China
144 CIMBL33 CIMMYT 314 GEMS12 USA 484 YE515 China
145 CIMBL34 CIMMYT 315 GEMS13 USA 485 YE52106 China
146 CIMBL35 CIMMYT 316 GEMS14 USA 486 YE8001 China
147 CIMBL36 CIMMYT 317 GEMS15 USA 487 YU374 China
148 CIMBL37 CIMMYT 318 GEMS16 Thailand 488 YU87-1 China
149 CIMBL38 CIMMYT 319 GEMS17 USA 489 Z2018F China
150 CIMBL39 CIMMYT 320 GEMS18 USA 490 ZAC546 China
151 CIMBL4 Thailand 321 GEMS19 USA 491 ZB648 China
152 CIMBL40 CIMMYT 322 GEMS2 USA 492 ZH68 China
153 CIMBL41 CIMMYT 323 GEMS20 USA 493 ZHENG22 China
154 CIMBL42 CIMMYT 324 GEMS21 USA 494 ZHENG28 China
155 CIMBL43 CIMMYT 325 GEMS23 USA 495 ZHENG29 China
156 CIMBL44 CIMMYT 326 GEMS24 USA 496 ZHENG30 China
157 CIMBL45 CIMMYT 327 GEMS25 USA 497 ZHENG32 China
158 CIMBL46 CIMMYT 328 GEMS27 USA 498 ZHENG35 China
159 CIMBL47 CIMMYT 329 GEMS28 USA 499 ZHENG58 China
160 CIMBL48 CIMMYT 330 GEMS29 USA 500 ZHENG653 China
161 CIMBL49 CIMMYT 331 GEMS3 USA 501 ZHI41 China
162 CIMBL5 USA 332 GEMS30 USA 502 ZHONG69 China
163 CIMBL50 CIMMYT 333 GEMS31 USA 503 ZI330 China
164 CIMBL51 CIMMYT 334 GEMS32 USA 504 ZONG3 China
165 CIMBL52 CIMMYT 335 GEMS33 USA 505 ZONG31 China
166 CIMBL53 CIMMYT 336 GEMS35 USA 506 ZZ01 China
167 CIMBL54 CIMMYT 337 GEMS36 USA 507 ZZ03 China
168 CIMBL56 CIMMYT 338 GEMS37 USA
169 CIMBL57 CIMMYT 339 GEMS39 USA
170 CIMBL58 CIMMYT 340 GEMS4 USA
[1] Zhang H W, Lu Y T, Ma Y T, Fu J J, Wang G Y. Genetic and molecular control of grain yield in maize. Mol Breed, 2021, 41: 18.
[2] 李燕, 谭君, 李红梅, 魏明, 何立群, 赵后娟, 杜林, 刘可心, 邓路长, 杨俊品, 唐海涛. 高赖氨酸玉米F2:3群体穗部性状与产量的相关及通径分析. 安徽农业科学, 2020, 48(8): 41-42.
Li Y, Tan J, Li H M, Wei M, He L Q, Zhao H J, Du L, Liu K X, Deng L C, Yang J P, Tang H T. Correlation and path analysis of ear character in F2:3 population derived from high lysine content maize hybrid Quanyu No. 9. J Anhui Agric Sci, 2020, 48(8): 41-42. (in Chinese with English abstract)
[3] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high-density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
[4] Huo D A, Ning Q, Shen X M, Liu L, Zhang Z X. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One, 2016, 11: e0155506.
[5] Chen J F, Zhang L Y, Liu S T, Li Z M, Huang R R, Li Y M, Cheng H L, Li X T, Zhou B, Wu S W, Chen W, Wu J Y, Ding J Q. The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One, 2016, 11: e0153428.
[6] Hao D R, Xue L, Zhang Z L, Cheng Y J, Chen G Q, Zhou G F, Li P C, Yang Z F, Xu C W. Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. Breed Sci, 2019, 69: 420-428.
[7] Liu C L, Zhou Q, Dong L, Wang H, Liu F, Weng J F, Li X H, Xie C X. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics, 2016, 17: 915.
pmid: 27842488
[8] Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L, Zhang Y L, Zou C Y, Lin H J, Gao S B, Lee M, Lübberstedt T, Pan G T, Shen Y O. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.
doi: 10.1111/pbi.13188 pmid: 31199064
[9] Yang C, Zhang L, Jia A M, Rong T Z. Identification of QTL for maize kernel yield and kernel-related traits. J Genet, 2016, 95: 239-247.
[10] Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511-526.
[11] Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, Li W Q, Liu L, Jackson D, Yan J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052-1059.
doi: 10.1038/s41588-019-0427-6 pmid: 31152161
[12] Bernardi J, Lanubile A, Li Q B, Kumar D, Kladnik A, Cook S D, Ross J J, Marocco A, Chourey P S. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol, 2012, 160: 1318-1328.
doi: 10.1104/pp.112.204743 pmid: 22961134
[13] 席先梅. 基于导入系群体玉米遗传图谱构建及重要农艺性状QTL定位. 内蒙古农业大学博士学位论文,内蒙古呼和浩特, 2018.
Xi X M. Construction of Genetic Linkage Map and Identification of QTLs for Important Agronomic Traits in Introgression Lines of Maize. PhD Dissertation of Graduate School of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract)
[14] Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 pmid: 28811335
[15] Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788.
doi: 10.3389/fpls.2020.00788 pmid: 32793248
[16] Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet, 2020, 133: 2881-2895.
doi: 10.1007/s00122-020-03639-4 pmid: 32594266
[17] Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Front Plant Sci, 2017, 8: 2190.
doi: 10.3389/fpls.2017.02190 pmid: 29312420
[18] 郭海平. 玉米穗粗主效 QTL qED3 的精细定位和候选基因克隆. 河南农业大学硕士学位论文,河南郑州, 2018.
Guo H P. Fine Mapping and Cloning of the Ear Diameter QTL qED3 in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[19] 涂亮, 高媛, 刘鹏飞, 郭向阳, 王安贵, 何兵, 刘颖, 祝云芳, 吴迅, 陈泽辉. 玉米穗长主效QTL q21EL-GZ 的精细定位. 植物遗传资源学报, 2021, 22: 1394-1401.
doi: 10.13430/j.cnki.jpgr.20210302001
Tu L, Gao Y, Liu P F, Guo X Y, Wang A G, He B, Liu Y, Zhu Y F, Wu X, Chen Z H. Fine mapping of the ear length major QTL q21EL-GZ in maize. J Plant Genet Res, 2019, 22: 1394-1401. (in Chinese with English abstract)
[20] 赵强. 基于两个F2:3家系的玉米产量相关性状QTL定位及候选基因分析. 贵州大学硕士学位论文,贵州贵阳, 2020.
Zhao Q. QTL Mapping and Candidate Gene Analysis of Maize Yield-Related Traits by Using Two Maize F2:3 Families. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2020. (in Chinese with English abstract)
[21] 赵强, 陈柔屹, 王安贵, 郭向阳, 刘鹏飞, 祝云芳, 吴迅, 陈泽辉. 基于高密度 SNP 标记对玉米穗部相关性状的QTL定位及候选基因分析. 玉米科学, 2021, 29(3): 36-41. (in Chinese with English abstract)
Zhao Q, Chen R Y, Wang A G, Guo X Y, Liu P F, Zhu Y F, Wu X, Chen Z H. QTL mapping and candidate gene analysis about ear-related traits in maize based on high density SNP markers. J Maize Sci, 2012, 29(3): 36-41. (in Chinese with English abstract)
[22] Gong D M, Tan Z D, Zhao H L, Pan Z Y, Sun Q, Qiu F Z. Fine mapping of a kernel length-related gene with potential value for maize breeding. Theor Appl Genet, 2021, 134: 1033-1045.
doi: 10.1007/s00122-020-03749-z pmid: 33459823
[23] Han X S, Qin Y, Sandrine AMN, Qiu F Z. Fine mapping of qKRN8, a QTL for maize kernel row number, and prediction of the candidate gene. Theor Appl Genet, 2020, 133: 3139-3150.
[24] Huang J, Lu G, Liu L, Raihan M S, Xu J T, Jian L M, Zhao L X, Tran T M, Zhang Q H, Liu J, Li W Q, Wei C X, Braun D M, Li Q, Fernie A R, Jackson D, Yan J B. The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and kernel filling. Plant Physiol, 2020, 183: 1696-1709.
doi: 10.1104/pp.20.00374 pmid: 32482908
[25] Li W L, Bai Q H, Zhan W M, Ma C Y, Wang S Y, Feng Y Y, Zhang M D, Zhu Y, Cheng M, Xi Z Y. Fine mapping and candidate gene analysis of qhkw5-3, a major QTL for kernel weight in maize. Theor Appl Genet, 2019, 132: 2579-2589.
[26] Nie N N, Ding X Y, Chen L, Wu X, An Y X, Li C H, Song Y C, Zhang D F, Liu Z Z, Wang T Y, Li Y, Li Y X, Shi Y S. Characterization and fine mapping of qkrnw4, a major QTL controlling kernel row number in maize. Theor Appl Genet, 2019, 132: 3321-3331.
[27] Wang G Y, Zhao Y M, Mao W B, Ma X J, Su C F. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front Genet, 2020, 11: 603920.
[28] Wang C, Li H G, Long Y, Dong Z Y, Wang J H, Liu C, Wei X, Wan X Y. A systemic investigation of genetic architecture and gene resources controlling kernel size-related traits in maize. Int J Mol Sci, 2023, 24: 1025.
[29] Wang J, Lin Z L, Zhang X, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Lin Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytol, 2019, 223: 1634-1646.
doi: 10.1111/nph.15890 pmid: 31059135
[30] Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, Yan J, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
[31] Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11: e1005670.
[32] Chen L, Li Y X, Li C, Shi Y, Song Y, Zhang D, Wang H, Li Y, Wang T. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnol J, 2020, 18: 1004-1014.
doi: 10.1111/pbi.13267 pmid: 31553822
[33] Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988.
doi: 10.1038/s41467-020-14746-7 pmid: 32080171
[34] Ning Q, Jian Y N, Du Y F, Li Y F, Shen X M, Jia H T, Zhao R, Zhan J M, Yang F, Jackson D, Liu L, Zhang Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun, 2021, 12: 5832.
doi: 10.1038/s41467-021-26123-z pmid: 34611160
[35] Sun Q, Li Y F, Gong D M, Hu A Q, Zhong W S, Zhao H L, Ning Q, Tan Z D, Liang K, Mu L Y, Jackson D, Zhang Z X, Yang F, Qiu F Z. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun, 2022, 13: 5708.
doi: 10.1038/s41467-022-33513-4 pmid: 36175574
[36] Zhang S, Deng L, Cheng R, Hu J, Wu C Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. J Integr Plant Biol, 2022, 64: 149-165.
[37] Stelpflug S C, Sekhon R S, Vaillancourt B, Hirsch C N, Buell C R, de Leon N, Kaeppler S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9: plantgenome2015.04.0025.
[38] Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353: 814-818.
doi: 10.1126/science.aag1125 pmid: 27540173
[39] Ohta M, Takaiwa F. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. J Plant Physiol, 2020, 245: 153109.
[40] Scholl S, Hillmer S, Krebs M, Schumacher K. ClCd and ClCf act redundantly at the trans-Golgi network/early endosome and prevent acidification of the Golgi stack. J Cell Sci, 2021, 134: jcs258807.
[41] Derkacheva M, Liu S J, Figueiredo D D, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L. H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. Nat Plants, 2016, 2: 16126.
doi: 10.1038/nplants.2016.126 pmid: 27525512
[42] Cui X, Lu F L, Li Y, Xue Y M, Kang Y Y, Zhang S B, Qiu Q, Cui X K, Zheng S Z, Liu B, Xu X D, Cao X F. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol, 2013, 162: 897-906.
[1] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with C4-type ZmPEPC+ZmPPDK gene#br# [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[2] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[3] QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations. This study was supported by the Major Science and Technology of Henan Province Project “The Wheat Nutrigenomics Analysis and Functional Food Creation and Industrialization Fund Project” (231100110300), and the Shennong Laboratory “first-class subject” project (SN01-2022-01). [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[4] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[5] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[6] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[7] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[8] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[9] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[10] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[11] SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135.
[12] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[13] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[14] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[15] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .