Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1406-1420.doi: 10.3724/SP.J.1006.2024.31056

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat

ZHU Ming-Kun1(), BAO Jun-Hao1, PANG Jing-Lu1, ZHOU Shi-Qi1, FANG Zhong-Yan1, ZHENG Wen1, ZHANG Ya-Zhou1,2, WU Dan-Dan1,2,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Chengdu 611130, Sichuan, China
  • Received:2023-10-08 Accepted:2024-01-31 Online:2024-06-12 Published:2024-02-27
  • Contact: * E-mail: 14646@sicau.edu.cn
  • Supported by:
    Youth Fund of the National Natural Science Foundation of China(32200180);Special Projects of the Central Government in Guidance of Local Science and Technology Development(2023ZYD0088);Department of Education Project of Sichuan Province(2022YFSY0035)

Abstract:

In this study, we evaluated the stripe rust resistance type and estimated the published resistance genes in 13 Roegneria species including 29 materials. Afterward, we conducted artificial crosses and investigated the morphology characters, genome constitution, and stripe rust resistance of the intergeneric hybrid F1 between stripe rust resistance Roegneria material and common wheat. The results showed as follows: 82.76% of the 29 tested materials exhibited stripe rust resistance at adult stage, and they contained more than 5 alleles of stripe rust resistance genes, which might still carry new resistance genes to wheat stripe rust. An intergeneric hybrids R. ciliaris-CSph2a F1 was generated using the screened high stripe rust resistance Roegneria ciliaris [Trin.] Nevski (ZY11004-R) and common wheat mutant CSph2a, and raised based on the embryo rescue technology. F1 hybrid contained 35 chromosomes with StYABD genome constitution and an average of 26.84 monovalents during pollen mother cell metaphase I. Besides, F1 exhibited morphological intermediacy, except the perennial living was inherited form from maternal R. ciliaris with high resistance to wheat stripe rust.

Key words: Roegneria, stripe rust, intergeneric hybrid, distant hybridization, perennial wheat

Table 1

Materials in this study"

物种
Species
编号
Accession
倍性
Ploidy
基因组组成
Genome
constitution
生活型
Life form
分布/来源
Distribution/Origin
R. barbicalla (毛盘鹅观草) ZY11089 2n = 4x = 28 StStYY 多年生Perennial 宁夏银川 Yinchuan, Ningxia
R. ciliaris (纤毛鹅观草) ZY11004 2n = 4x = 28 StStYY 多年生Perennial 陕西临潼 Lintong, Shaanxi
R. ciliaris ZY1008 2n = 4x = 28 StStYY 多年生Perennial 浙江嵊州 Shengzhou, Zhejiang
R. ciliaris Z98050 2n = 4x = 28 StStYY 多年生Perennial 四川汶川 Wenchuan, Sichuan
R. ciliaris Z98058 2n = 4x = 28 StStYY 多年生Perennial 四川崇州 Chongzhou, Sichuan
R. ciliaris ZY276395 2n = 4x = 28 StStYY 多年生Perennial 四川红原 Hongyuan, Sichuan
R. ciliaris 88-89-228 2n = 4x = 28 StStYY 多年生Perennial 陕西杨凌 Yangling, Shaanxi
R. ciliaris 88-89-236 2n = 4x = 28 StStYY 多年生Perennial 四川雅安 Ya’an, Sichuan
R. ciliaris 88-89-238 2n = 4x = 28 StStYY 多年生Perennial 黑龙江哈尔滨 Harbin, Heilongjiang
R. ciliaris 88-89-294 2n = 4x = 28 StStYY 多年生Perennial 河南郑州 Zhengzhou, Henan
R. dolichathera (长芒鹅观草) ZY230025 2n = 4x = 28 StStYY 多年生Perennial 四川天全 Tianquan, Sichuan
R. hondai (本田鹅观草) ZY11020 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特Hohhot, Inner Mongolia
R. japonesis (竖立鹅观草) 88-89-252 2n = 4x = 28 StStYY 多年生Perennial 四川宜宾 Yibin, Sichuan
R. japonesis 88-89-263 2n = 4x = 28 StStYY 多年生Perennial 四川宜宾Yibin, Sichuan
R. japonesis 88-89-261 2n = 4x = 28 StStYY 多年生Perennial 四川宜宾Yibin, Sichuan
R. japonesis 88-89-253 2n = 4x = 28 StStYY 多年生Perennial 四川兴文 Xingwen, Sichuan
R. japonesis 88-89-242 2n = 4x = 28 StStYY 多年生Perennial 四川雅安 Ya’an, Sichuan
R. nakaii (吉林鹅观草) ZY11027 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. pendulina (缘毛鹅观草) ZY11006 2n = 4x = 28 StStYY 多年生Perennial 陕西临潼 Lintong, Shaanxi
R. pendulina ZY11046 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. sinica (中华鹅观草) ZY11021 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. sinica ZY11029 2n = 4x = 28 StStYY 多年生Perennial 内蒙古包头 Baotou, Inner Mongolia
R. scabridula (粗糙鹅观草) ZY11012 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. stricta (肃草) ZY11083 2n = 4x = 28 StStYY 多年生Perennial 内蒙古阿拉善
Alxa, Inner Mongolia
R. stricta ZY11030 2n = 4x = 28 StStYY 多年生Perennial 内蒙古呼和浩特
Hohhot, Inner Mongolia
R. tibetica (西藏鹅观草) ZY230027 2n = 4x = 28 StStYY 多年生Perennial 西藏 Xizang
R. turczaninovii (直穗鹅观草) ZY220095 2n = 4x = 28 StStYY 多年生Perennial 四川红原 Hongyuan, Sichuan
R. varia (多变鹅观草) ZY11092 2n = 4x = 28 StStYY 多年生Perennial 宁夏银川 Yinchuan, Ningxia
T. aestivum cv. Kaixianluohanmai (KL) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum cv. Chinese Spring (CS) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum (CSph1b) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum (CSph2b) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University
T. aestivum (CSph2a) 2n = 6x = 42 AABBDD 一年生Annual 四川农业大学
Sichuan Agricultural University

Table 2

Molecular markers used for the stripe rust gene detection in Roegneria"

Yr 基因
Yr gene
类型
Type
分子标记
Molecular marker
引物序列
Primer sequence (5′-3′)
参考文献
Reference
Yr5 DM Yr5_B GGGAACACTTCACGATCA
AATTCCTTCATGCCTTCC
[38]
Yr9 SSR P6M12-P GTACTAGTATCCAGAGGTCACAAG
CAGACAAACAGAGTACGGGC
[39]
Yr10 DM Yr10-5 GGAAATGTGGCGGAGTACCA
CGGAAGGGAGAACCACTGTC
[40]
Yr15 DM WJL3F, WJL3R AAAAGAGCTCGCCTCCTACG
GCCATGATGAGATCGGGAGG
[41]
Yr17 SCAR SC2372 AGGGGCTACTGACCAAGGCT
TGCAGCTACAGCAGTATGTACACAAAA
[42]
Yr18 STS csLV34 GTTGGTTAAGACTGGTGATGG
TGCTTGCTATTGCTGAATAGT
[43]
Yr24 SSR Xgwm273 ATTGGACGGACAGATGCTTT
AGCAGTGAGGAAGGGGATC
[44]
Yr26 STS Xwe173 GGGACAAGGGGAGTTGAAGC
GAGAGTTCCAAGCAGAACAC
[45]
Yr28 DM P175, P176 GCACCGTCCTTCATCTCAGT
TGCTTTTCCCCGTATCCCTT
[46]
Yr39 SSR Xgwm131 AATCCCCACCGATTCTTCTC
AGTTCGTGGGTCTCTGATGG
[47]
Yr41 SSR Xgwm410 GCTTGAGACCGGCACAGT
CGAGACCTTGAGGGTCTAGA
[48]
Yr48 SSR Xwmc727 CATAATCAGGACAGCCGCAC
TAGTGGCCTGATGTATCTAGTTGG
[49]
Yr65 SSR Xgwm18 GGTTGCTGAAGAACCTTATTTAGG
TGGCGCCATGATTGCATTATCTTC
[50]
Yr67 SSR Xbarc182 CCATGGCCAACAGCTCAAGGTCTC
CGCAAAACCGCATCAGGGAAGCACCAAT
[51]
Yr84 SSR P70 AATGGGAGGACTCTTGCGTG
CTGGGAATGAACCGACAGCT
[52]

Table 3

Identification of infection type and resistance gene in 29 Roegneria at adult stage"

序号
Ordinal number
物种
Species
编号
Accession
成株期感染型
Infection type in
adult-plant stage (ITs = 0~9)
Yr 基因
Yr gene
1 R. ciliaris ZY11004-R 0 Yr9+Yr17+Yr28+Yr39
2 R. pendulina ZY11006 0 Yr9+Yr10+Yr15+Yr17+Yr18+Yr28+Yr39+Yr48
3 R. pendulina ZY11046 0 Yr9+Yr10+Yr15+Yr17+Yr18+Yr39+Yr48
4 R. sinica ZY11029 0 Yr10+Yr15+Yr17+Yr24+Yr28+Yr48
5 R. sinica ZY11021 0 Yr10+Yr15+Yr17+Yr24+Yr28+Yr39
6 R. stricta ZY11030 0 Yr9+Yr10+Yr17+Yr18+Yr28+Yr39
7 R. tibetica ZY230027 0 Yr10+Yr17+Yr28+Yr39+Yr48
8 R. varia ZY11092 0 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
9 R. stricta ZY11083 0 Yr9+Yr10+Yr17+Yr18+Yr28+Yr39
10 R. ciliaris ZY1008 1 Yr9+Yr10+Yr17+Yr28+Yr39
11 R. ciliaris Z98058 1 Yr9+Yr10+Yr17+Yr28+Yr39
12 R. dolichathera ZY230025 1 Yr10+Yr17+Yr24+Yr28
13 R. nakaii ZY11027 1 Yr10+Yr17+Yr24+Yr28
14 R. hondai ZY11020 1 Yr10+Yr17+Yr24+Yr28+Yr39
15 R. ciliaris ZY276395 2 Yr9+Yr10+Yr15+Yr17+Yr28+Yr39+Yr48
16 R. barbicalla ZY11089 2 Yr9+Yr10+Yr15+Yr17+Yr26+Yr39+Yr84
17 R. turczaninovii ZY220095 2 Yr10+Yr15+Yr17+Yr26+Yr28+Yr48
18 R. ciliaris Z98050 4 Yr5+Yr9+Yr10+Yr17+Yr28+Yr39+Yr84
19 R. japonesis 88-89-252 4 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
20 R. scabridula. ZY11012 4 Yr9+Yr17+Yr28+Yr39
21 R. ciliaris 88-89-294 5 Yr5+Yr9+Yr10+Yr17+Yr24+Yr28+Yr39+Yr84
22 R. japonesis 88-89-263 5 Yr9+Yr10+Yr17+Yr28+Yr48+Yr84
23 R. japonesis 88-89-261 5 Yr9+Yr10+Yr17+Yr28+Yr39+Yr84
24 R. ciliaris 88-89-236 6 Yr9+Yr10+Yr17+Yr28+Yr39+Yr84
25 R. ciliaris 88-89-238 7 Yr9+Yr10+Yr17+Yr28
26 R. japonesis 88-89-253 7 Yr5+Yr9+Yr10+Yr17+Yr26+Yr28+Yr39+Yr48+Yr84
27 R. japonesis 88-89-242 7 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
28 R. ciliaris 88-89-228 8 Yr9+Yr10+Yr17+Yr28+Yr39+Yr48+Yr84
29 R. ciliaris ZY11004-S 9 Yr9+Yr10+Yr17+Yr28+Yr39

Fig. 1

Evaluation of wheat stripe rust type in R. ciliaris (ZY11004) A: stripe rust resistance type (ZY11004-R); B: stripe rust susceptible type (ZY11004-S)."

Table 4

Statistics of intergeneric hybridization between wheat and R. ciliaris (ZY11004-R)"

母本
Female
父本
Male
杂交小花数
Number of
hybrid florets
子房膨大数
Ovary enlargement
number
子房膨大率
Ovary enlargement
rate (%)
出愈数
Number of callus generated
出愈率
Rate of callus generated (%)
ZY11004-R CS 792 32 4.04 2 6.25
ZY11004-R CSph1b 887 35 3.95 0
ZY11004-R CSph2a 1872 108 5.77 1 0.93
ZY11004-R CSph2b 2160 140 6.48 4 2.86
ZY11004-R KL 1104 58 5.25 0
CS ZY11004-R 280 0 0 0
CSph1b ZY11004-R 286 1 0.35 0
CSph2a ZY11004-R 242 3 1.24 0
CSph2b ZY11004-R 423 1 0.24 0
KL ZY11004-R 461 12 2.60 0
总计 Total 8507 390 4.55 7 1.79

Fig. 2

Ovary enlargement rate between R. ciliaris as the maternal and paternal donor (t-test) The X-axis is ZY11004-R as different parent, and the Y-axis is ovary enlargement rate. ***: P < 0.001."

Fig. 3

Plant morphology and genome identification of R. ciliaris-CSph2a hybrid F1 and parents A: R. ciliaris; B: common wheat CSph2a; C: GISH identification of R. ciliaris-CSph2a hybrid F1; the whole R. ciliaris genome DNA is labeled in purple and the whole wheat CSph2a genome DNA is labeled in green."

Fig. 4

Meiosis I of pollen mother cell about R. ciliaris-CSph2a hybrid F1 A: leptotene cell; B: metaphase cells (arrows indicate bivalent chromosomes); C: anaphase cells (arrows represent the imbalance and lagging chromosomes)."

Table 5

Chromosomal behavior statistics of meiosis I cells about R. ciliaris-CSph2a hybrid F1 and parents"

物种
Species
染色体数
Chromosome number
构型Configuration 交叉值a
Chiasmata/cell a
Cb
C-value b
统计数
Statistics
I II III IV
Total Ring Rod
CSph2a 42 0.18 20.82 17.88 2.94 0.06 38.88 0.93 32
R. ciliaris 28 0.13 13.93 13.77 0.17 27.70 0.99 30
(R. ciliaris×CSph2a) F1 35 26.84 3.97 0 3.97 0.03 0.03 4.13 0.12 32

Fig. 5

Pollen viability investigation (I2-KI) A: mature pollen cell of R. ciliaris with viability; B: mature pollen R. ciliaris-CSph2a hybrid F1 were completely unviable; C: mature pollen of common wheat CSph2a with viability."

Fig. 6

Morphology about spike, spikelet and the stripe rust type of R. ciliaris-CSph2a hybrid F1 and parents at the adult stage A: spikes; B: spikelets; C: the identification of resistance to stripe rust in adult stage; a: R. ciliaris; b: R. ciliaris-CSph2a hybrid F1; c: common wheat CSph2a."

Fig. 7

Growth status at different times about the same hybrid F1 between R. ciliaris and common wheat CSph2a A: September in 2022; B: November in 2022; C: March in 2023; D: September in 2023."

[1] Xiao J, Liu B, Yao Y Y, Guo Z F, Jia H Y, Kong L R, Zhang A M, Ma W J, Ni Z F, Xu S B, Lu F, Jiao Y N, Yang W Y, Lin X L, Sun S L, Lu Z F, Gao L F, Zhao G Y, Cao S H, Chen Q, Zhang K P, Wang M C, Wang M, Hu Z R, Guo W L, Li G Q, Ma X, Li J M, Han F P, Fu X D, Ma Z Q, Wang D W, Zhang X Y, Ling H Q, Xia G M, Tong Y P, Liu Z Y, He Z H, Jia J Z, Chong K. Wheat genomic study for genetic improvement of traits in China. Sci China Life Sci, 2022, 65: 1718-1775.
[2] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45: 1-6.
Ma Z H. Researches and control of wheat stripe rust in China. J Plant Prot, 2018, 45: 1-6. (in Chinese with English abstract)
[3] Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896-904.
[4] Han D J, Wang Q L, Chen X M, Zeng Q D, Wu J H, Xue W, Zhan G M, Huang L, Kang Z S. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis, 2015, 99: 8-14.
[5] Li J, Dundas I, Dong C M, Li G R, Trethowan R, Yang Z J, Hoxha S, Zhang P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2020, 133: 1095-1107.
[6] Zhu Z W, Cao Q, Han D J, Wu J H, Wu L, Tong J Y, Xu X W, Yan J, Zhang Y, Xu K J, Wang F J, Dong Y C, Gao C B, He Z H, Xia X C, Hao Y F. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor Appl Genet, 2023, 136: 136-142.
[7] Li D Y, Zhang J W, Liu H J, Tan B W, Zhu W, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Zhang H Q, Ma J, Chen G Y, Zhou Y H, Kang H Y. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E (1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genom, 2019, 20: 963-975.
[8] Klymiuk V, Chawla H S, Wiebe K, Ens J, Fatiukha A, Govta L, Fahima T, Pozniak C J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol, 2022, 5: 826-834.
[9] 颜济, 杨俊良. 小麦族生物系统学(第四卷), 北京: 中国农业出版社, 2011. pp 377-444.
Yan J, Yang J L. Triticeae Biosystematics, Volume 4. Beijing: China Agriculture Press, 2011. pp 377-444. (in Chinese with English abstract)
[10] Sharma H C, Gill B S. New hybrids between Agropyron and wheat. Theor Appl Genet, 1983, 66: 111-121.
doi: 10.1007/BF00265184 pmid: 24263763
[11] 翁益群, 刘大钧. 鹅观草(Roegneria C. Koch)与普通小麦(Triticum aestivum L.)属间杂种F1的形态、赤霉病抗性和细胞遗传学研究. 中国农业科学, 1989, 22(5): 1-8.
Weng Y Q, Liu D J. Morphology, scab resistance and cytogenetics of intergeneric hybrids of Triticum aestivum L. with Roegneria C. Koch (Agropyron) species. Sci Agric Sin, 1989, 22(5): 1-8. (in Chinese with English abstract)
[12] Wang Y F, Yen C, Yang J L, Liu F Q. Evaluation of Roegneria for resistance to head scab caused by Fusarium graminearum Schwabe. Genet Resour Crop Evol, 1997, 44: 211-215.
[13] 李万几, 李逸平, 秦家忠. 栽培大麦 × 纤毛鹅观草属间杂种后代系抗赤霉病研究. 植物病理学报, 1999, 29: 203-209.
Li W J, Li Y P, Qin J Z. Resistance to barley scab in progeny lines derived from the hybridization between cultivated barley and Roegneria ciliaris. Acta Phytopathol Sin, 1999, 29: 203-209. (in Chinese with English abstract)
[14] 杨欣明, 李立会, 李秀全, 董玉琛. 向普通小麦导入纤毛鹅观草抗黄矮病基因的研究: I. F1和BC1的产生及其细胞遗传学. 遗传学报, 1999, 26: 370-443.
Yang X M, Li L H, Li X Q, Dong Y C. Introduction of genes resistant to barley yellow dwarf virus from Roegneria ciliaris to common wheat: I. Production and cytogenetics of F1 and BC1 progenies. Acta Genet Sin, 1999, 26: 370-443. (in Chinese with English abstract)
[15] Kong L N, Song X Y, Xiao J, Sun H J, Dai K L, Lan C X, Singh P, Yuan C X, Zhang S Z, Singh R, Wang H, Wang X E. Development and characterization of a complete set of Triticum aestivum-Roegneria ciliaris disomic addition lines. Theor Appl Genet, 2018, 131: 1793-1806.
[16] Song R R, Cheng Y F, Wen M X, Song X Y, Wang T, Xia M S, Sun H J, Cheng M H, Cui H M, Yuan C X, Liu X X, Wang Z K, Sun L, Wang H Y, Xiao J, Wang X E. Transferring a new Fusarium head blight resistance locus FhbRc1 from Roegneria ciliaris into wheat by developing alien translocation lines. Theor Appl Genet, 2023, 136: 36-48.
[17] Wall A, Riley R, Chapman V. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res, 1971, 18: 311-328.
[18] Sears E R. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977, 19: 585-593.
[19] 刘登才, 魏育明, 郑有良. 用新隐性ph基因向小麦转移Aegilops variabilis Eig遗传物质. 四川农业大学学报, 1999, 17: 261-267.
Liu D C, Wei Y M, Zheng Y L. Genetic transfer from Aegilops variabilis Eig to wheat via a new recessive ph gene. J Sichuan Agric Univ, 1999, 17: 261-267. (in Chinese with English abstract)
[20] Rey M D, Martín A C, Smedley M, Hayta S, Harwood W, Shaw P, Moore G. Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Front Plant Sci, 2018, 20: 509-520.
[21] Martín A C, Alabdullah A K, Moore G. A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci Rep, 2021, 11: 21811-21823.
[22] Lukaszewski A J. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci, 2000, 40: 216-225.
[23] Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X. Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet, 2018, 131: 2381-2395.
doi: 10.1007/s00122-018-3160-0 pmid: 30109393
[24] Dai K L, Zhao R H, Shi M M, Xiao J, Yu Z Y, Jia Q, Wang Z K, Yuan C X, Sun H J, Cao A Z, Zhang R Q, Chen P D, Li Y B, Wang H Y, Wang X E. Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet, 2020, 133: 217-226.
[25] Albani M C, Coupland G. Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol, 2010, 91: 323-348.
doi: 10.1016/S0070-2153(10)91011-9 pmid: 20705187
[26] Cui L, Ren Y, Murray T D, Yan W, Qing G, Niu Y, Sun Y, Li H. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering, 2018, 4: 507-513.
[27] DeHaan L, Ismail B. Perennial cereals provide ecosystem benefits. Cereal Food World, 2017, 62: 278-281.
[28] Cox S, Nabukalu P, Paterson A H, Kong W, Nakasagga S. Development of perennial grain sorghum. Sustainability, 2018, 10: 172-180.
[29] Huang G, Qin S, Zhang S, Cai X, Wu S, Dao J, Zhang J, Huang L, Harnpichitvitaya D, Wade L J, Fengyi H. Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan province of China. Sustainability, 2018, 10: 1086-1103.
[30] Cattani D J. Potential of perennial cereal rye for perennial grain production in Manitoba. Can J Plant Sci, 2019, 99: 958-960.
[31] Zhang S L, Huang G F, Zhang Y J, Lv X T, Wan K J, Liang J, Feng Y P, Dao J R, Wu S K, Zhang L, Yang X, Lian X P, Huang L Y, Shao L, Zhang J, Qin S W, Tao D Y, Crews T, Sacks E, Hu F Y. Sustained productivity and agronomic potential of perennial rice. Nat Sustain, 2023, 6: 28-38.
[32] Cox T, Bender M, Picone C, Van T D, Holland J, Brummer C, Zoeller B, Paterson A H, Jackson W. Breeding perennial grain crops. Crit Rev Plant Sci, 2002, 21: 59-91.
[33] Tsitsin N V. Remote hybridization as a method of creating new species and varieties of plants. Euphytica, 1965, 14: 326-330.
[34] Line R F, Abdul Q. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968-87. Washington, D.C.: National Technical Information Service, 1992, 1788: 1-44.
[35] Han F, Liu B, Fedak G, Liu Z. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004, 109: 1070-1076.
[36] Farco G E, Dematteis M. Meiotic behavior and pollen fertility in triploid and tetraploid natural populations of Campuloclinium macrocephalum (Eupatorieae, Asteraceae). Plant Syst Evol, 2014, 300: 1843-1852.
[37] Gunawardena T A, Shu F K, Pax F, Blamey C. Low temperature induced spikelet sterility in rice: I. Nitrogen fertilisation and sensitive reproductive period. Crop Past Sci, 2003, 54: 937-946.
[38] Marchal C, Zhang J P, Zhang P, Fenwick P, Steuernagel B, Adamski N, Boyd L, McIntosh R, Wulff B, Berry S, Lagudah E, Uauy C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants, 2018, 4: 662-668.
doi: 10.1038/s41477-018-0236-4 pmid: 30150615
[39] Mago R, Miah H, Lawrence G J, Wellings C R, Spielmeyer W, Bariana H S, McIntosh R A, Pryor A J, Ellis J G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet, 2005, 112: 41-50.
doi: 10.1007/s00122-005-0098-9 pmid: 16283230
[40] Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014, 7: 1740-1755.
[41] Huang L, Feng L, He Y, Tang Z, He J, Sela H, Krugman T, Fahima T, Liu D, Wu B. Variation in stripe rust resistance and morphological traits in wild emmer wheat populations. Agronomy, 2019, 9: 44-53.
[42] 贾举庆, 雷孟平, 刘成, 李光蓉, 杨足君. 小麦抗条锈基因Yr17的新SCAR标记的建立与应用. 麦类作物学报, 2010, 30: 11-16.
Jia J Q, Lei M P, Liu C, Li G R, Yang Z J. Establishment and application of a new SCAR marker linked to stripe rust resistance gene Yr17 in wheat. J Triticeae Crops, 2010, 30: 11-16. (in Chinese with English abstract)
[43] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[44] Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440.
doi: 10.1007/s00122-006-0245-y pmid: 16525837
[45] Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2007, 159: 359-366.
[46] Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M N, Epstein L, Liu M, Kou C L, Qi J, Chen F J, Li M K, Gao G, Ni F, Zhang L Q, Hao M, Wang J R, Chen X M, Luo M C, Zheng Y L, Wu J J, Liu D C, Fu D L. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun, 2019, 10: 4023-4034.
doi: 10.1038/s41467-019-11872-9 pmid: 31492844
[47] Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high- temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet, 2007, 114: 1277-1287.
doi: 10.1007/s00122-007-0518-0 pmid: 17318493
[48] Luo P G, Hu X Y, Ren Z L, Zhang H Y, Shu K, Yang Z J. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome, 2008, 51: 922-927.
doi: 10.1139/G08-079 pmid: 18956025
[49] Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123: 143-157.
doi: 10.1007/s00122-011-1573-0 pmid: 21455722
[50] Cheng P, Xu L S, Wang M N, See D R, Chen X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet, 2014, 127: 2267-2277.
doi: 10.1007/s00122-014-2378-8 pmid: 25142874
[51] Xu H X, Zhang J, Zhang P, Qie Y M, Niu Y C, Li H J, Ma P T, Xu Y F, An D G. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica, 2014, 198: 317-323.
[52] Duan Y, Luo J, Yang Z, Li G, Tang Z, Fu S. The physical location of stripe rust resistance genes on chromosome 6 of rye (Secale cereale L.) AR106BONE. Front Plant Sci, 2022, 13: 928014-928022.
[53] 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交, 北京: 科学出版社, 1985. pp 25-142.
Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M. Distant hybridization of wheat, Beijing: Science Press, 1985. pp 25-142. (in Chinese with English abstract)
[54] 李立会, 董玉琛. 普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究. 中国科学: 化学生命科学地学, 1990, 1(5): 492-497.
Li L H, Dong Y C. Production and cytogenetic study of intergenus hybrids between Triticum aestivum and Agropyron desertorum. Sci China Chem. 1990, 1(5): 492-497 (in Chinese with English abtract).
[55] 陈佩度, 孙文献, 刘文轩, 袁建华, 刘朝晖, 冯以高, 王苏玲, 周波, 刘大钧. 将大赖草抗赤霉病基因导入普通小麦及抗赤霉病基因的染色体定位. 遗传, 1998, 20(增刊1): 126.
Chen P D, Sun W X, Liu W X, Yuan J H, Liu Z H, Feng Y G, Wang S L, Zhou B, Liu D J. Introduce the gene of scab resistance from Leymus racemosus into Triticum aestivum and study the chromosomal localization of scab resistance gene. Hereditas (Beijing), 1998, 20(S1): 126. (in Chinese with English abstract)
[56] 董玉琛, 刘旭. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006. pp 125-216.
Dong Y C, Liu X. Chinese crops and their wild relatives, Beijing: China Agriculture Press, 2006. pp 125-216. (in Chinese with English abstract)
[57] McIntosh R, Mu J M, Han D J, Kang Z S. Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review. Crop J, 2018, 6: 321-329.
doi: 10.1016/j.cj.2018.02.001
[58] Jin H L, Zhang H P, Zhao X Y, Long L, Guan F N, Wang Y P, Huang L Y, Zhang X Y, Wang Y Q, Li H, Li W, Pu Z E, Zhang Y Z, Xu Q, Jiang Q T, Wei Y M, Ma J, Qi P F, Deng M, Kang H Y, Chen G Y, Jiang Y F. Identification of a suppressor for the wheat stripe rust resistance gene Yr81 in Chinese wheat landrace Dahongpao. Theor Appl Genet, 2023, 136: 67-79.
[59] Fan C L, Hao M, Jia Z Y, Neri C, Chen X, Chen W S, Liu D C, Lukaszewski A J. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J, 2021, 105: 1665-1676.
[60] Fan C L, Luo J T, Sun J J, Chen H, Li L Q, Zhang L Y, Chen X, Li Y Z, Ning S Z, Yuan Z W, Jiang B, Zhang L Q, Chen X J, Lukaszewski A, Liu D C, Hao M. The KL system in wheat permits homoeologous crossing over between closely related chromosomes. Crop J, 2023, 11: 808-816.
doi: 10.1016/j.cj.2023.01.003
[61] He H, Yokoi S, Tezuka T. A high maternal genome excess causes severe seed abortion leading to ovary abscission in Nicotiana interploidy-interspecific crosses. Plant Direct, 2020, 4: e00257.
[62] 张海泉, 杨虹, 郎杰. 普通小麦与粗山羊草正反杂交研究. 西北农林科技大学学报(自然科学版), 2016, 44(4): 33-38.
Zhang H Q, Yang H, Lang J.Reciprocal crosses of Triticum aestivum and Aegilops tauschii. J Northwest A&F Univ (Nat Sci Edn), 2016, 44(4): 33-38. (in Chinese with English abstract)
[63] Wang Q, Xiang J, Gao A, Yang X, Liu W, Li X, Li L. Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae). Genome, 2010, 53: 241-249.
doi: 10.1139/g09-098 pmid: 20237601
[64] Zeng J, Fan X, Zhang H Q, Sha L N, Kang H Y, Zhang L, Yang R W, Ding C B, Zhou Y H. Molecular and cytological evidences for the natural wheatgrass hybrids occurrence and origin in west China. Genes Genom, 2012, 34: 499-507.
[65] Chen C, Zheng Z L, Wu D D, Tan L, Yang C R, Liu S Q, Lu J L, Cheng Y R, Sha L N, Wang Y, Kang H Y, Fan X, Zhou Y H, Zhang C B, Zhang H Q. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol, 2022, 12: e8517.
doi: 10.1002/ece3.8517 pmid: 35136562
[66] Wu D D, Liu X Y, Yu Z H, Tan T, Lu J L, Cheng Y R, Sha L N, Fan X, Kang H Y, Wang Y, Zhou Y H, Zhang C B, Zhang H Q. Recent natural hybridization in Elymus and Campeiostachys of Triticeae: evidence from morphological, cytological and molecular analyses. Bot J Linn Soc, 2023, 201: 428-442.
[67] Chen N, Chen W J, Yan H, Wang Y, Kang H Y, Zhang H Q, Zhou Y H, Sun G L, Sha L N, Fan X. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Mol Phylogenet Evol, 2020, 149: 106838-106847.
[68] Wu D D, Yang N M, Xiang Q, Zhu M K, Fang Z Y, Zheng W, Lu J L, Sha L N, Fan X, Cheng Y R, Wang Y, Kang H Y, Zhang H Q, Zhou Y H. Pseudorogneria libanotica intraspecific genetic polymorphism revealed by fluorescence in situ hybridization with newly identified tandem repeats and wheat single-copy gene probes. Int J Mol Sci, 2022, 23: 14818-14834.
[69] Abbasi J, Dvorak J, Mcguire P, Dehghani H. Perennial growth and salinity tolerance in wheat × wheatgrass amphiploids varying in the ratio of wheat to wheatgrass genomes. Plant Breed, 2020, 139: 1281-1289.
[70] Wagoner P. Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci, 1990, 9: 381-408.
[71] Lammer D, Cai X W, Arterburn M, Chatelain J, Murray T, Jones S. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot, 2004, 55: 1715-1720.
doi: 10.1093/jxb/erh209 pmid: 15234999
[72] Bell L, Wade L, Ewing M. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci, 2010, 61: 679-690.
[73] Kantar M B, Tyl C E, Dorn K M, Zhang X F, Jungers J M, Kaser J M, Schendel R R, Eckberg J O, Runck B C, Bunzel M, Jordan N R, Stupar R M, Marks M D, Anderson J A, Johnson G A, Sheaffer C C, Schoenfuss T C, Ismail B, Heimpel G E, Wyse D L. Perennial grain and oilseed crops. Annu Rev Plant Biol, 2016, 67: 703-729.
doi: 10.1146/annurev-arplant-043015-112311 pmid: 26789233
[74] 赵海滨, 张延明, 史春龙, 闫小丹, 田超, 厉永鹏, 李集临. 寒地多年生小麦的选育与细胞遗传学分析. 作物学报, 2012, 38: 1378-1386.
doi: 10.3724/SP.J.1006.2012.01378
Zhao H B, Zhang Y M, Shi C L, Yan X D, Tian C, Li Y P, Li J L. Development and cytogenetic analysis of perennial wheat in cold region. Acta Agron Sin, 2012, 38: 1378-1386. (in Chinese with English abstract)
[75] Crews T E, Cattani D J. Strategies, advances, and challenges in breeding perennial grain crops. Sustainability, 2018, 10: 2192-2198.
[76] Hayes R C, Wang S, Newell M T, Turner K, Larsen J, Gazza L, Anderson J A, Bell L W, Cattani D J, Frels K, Galassi E, Morgounov A I, Revell C K, Thapa D B, Sacks E J, Sameri M, Wade L J, Westerbergh A, Shamanin V, Amanov A, Li G D. The performance of early-generation perennial winter cereals at 21 sites across four continents. Sustainability, 2018, 10: 1124-1151.
[1] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[2] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[3] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[4] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[5] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[6] ZHAO Xu-Yang, YAO Fang-Jie, LONG Li, WANG Yu-Qi, KANG Hou-Yang, JIANG Yun-Feng, LI Wei, DENG Mei, LI Hao, CHEN Guo-Yue. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones [J]. Acta Agronomica Sinica, 2021, 47(10): 2053-2063.
[7] BAI Zong-Fan,JING Xia,ZHANG Teng,DONG Ying-Ying. Canopy SIF synergize with total spectral reflectance optimized by the MDBPSO algorithm to monitor wheat stripe rust [J]. Acta Agronomica Sinica, 2020, 46(8): 1248-1257.
[8] ZHENG Yan-Yan, HUANG De-Hua, LI Ji-Long, ZHANG Hui-Fei, BAO Yin-Guang, NI Fei, WU Jia-Jie. Analysis of the stripe rust resistance in a wheat line CB037 with high regeneration and transformation efficiency [J]. Acta Agronomica Sinica, 2020, 46(11): 1743-1749.
[9] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[10] ZHANG Huai-Zhi,XIE Jing-Zhong,CHEN Yong-Xing,LIU Xu,WANG Yong,WU Qiu-Hong,Lu Ping,ZHANG De-Yun,LI Miao-Miao,GUO Guang-Hao,YAN Su-Hong,YANG Zhao-Sheng,ZHAO Hong,WANG Xi-Cheng,JIA Lianhe. Mapping Stripe Rust Resistance Gene YrZM103 in Wheat Cultivar Zhengmai 103 by BSR-Seq [J]. Acta Agron Sin, 2017, 43(11): 1643-1649.
[11] LIU Jin-Dong,YANG En-Nian,XIAO Yong-Gui,CHEN Xin-Min,WU Ling,BAI Bin,LI Zai-Feng,Garry M. ROSEWARNE,XIA Xian-Chun,HE Zhong-Hu. Development, Field and Molecular Characterization of Advanced Lines with Pleiotropic Adult-Plant Resistance in Common Wheat [J]. Acta Agron Sin, 2015, 41(10): 1472-1480.
[12] CHEN Guo-Yue, LIU Wei, HE Yuan-Jiang, GOU Lu-Lu, YU Ma, CHEN Shi-Sheng, WEI Yu-Ming, ZHENG You-Liang. Specific Loci for Adult-Plant Resistance to Stripe Rust in Wheat Founder Parent Fan 6 and Their Genetic Dissection in Its Derivatives [J]. Acta Agronomica Sinica, 2013, 39(05): 827-836.
[13] ZHAO Hai-Bin,ZHANG Yan-Ming,SHI Chun-Long,YAN Xiao-Dan,TIAN Chao,LI Yong-Peng,LI Ji-Lin. Development and Cytogenetic Analysis of Perennial Wheat in Cold Region [J]. Acta Agron Sin, 2012, 38(08): 1378-1386.
[14] MA Dong-Fang, WANG Hai-Ge, TANG Meng-Shuang, YUAN Chi-Li, BAI Yao-Bo, ZHOU Xin-Li, SONG Jian-Rong, JING Jin-Hua. Genetic Analysis and Molecular Mapping of Stripe Rust Resistance Gene in Wheat Cultivar Zhongliang 21 [J]. Acta Agron Sin, 2011, 37(12): 2145-2151.
[15] CAO Shi-Qi, ZHANG Bo, LI Meng-Ju, XU Shi-Chang, JIA Hui-Sheng, JIN She-Lin, GU Qiu-Zhen, HUANG Jin, JIN Meng-An, CHANG Xun-Wu. Postulation of Stripe Rust Resistance Genes and Analysis of Adult Resistance in 50 Wheat Varieties (Lines) in Gansu Province [J]. Acta Agron Sin, 2011, 37(08): 1360-1371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .