Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 247-259.doi: 10.3724/SP.J.1006.2025.44044
• RESEARCH NOTES • Previous Articles Next Articles
SONG Qian-Na1,2(), SONG Hui-Yang1, LI Jing-Hao1, DUAN Yong-Hong1, MEI Chao1,2, FENG Rui-Yun1,2,*()
[1] | 张冠初, 张智猛, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 田家明, 戴良香. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响. 华北农学报, 2018, 33(3): 176-181. |
Zhang G C, Zhang Z M, Ci D W, Ding H, Yang J S, Shi X L, Tian J M, Dai L X. Effects of drought and salt stress on osmotic regulator and antioxidase activities. Acta Agric Boreali-Sin, 2018, 33(3): 176-181 (in Chinese with English abstract). | |
[2] | Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681. |
[3] | Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270. |
[4] | 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, 42(7): 4-16. |
Qiu H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issues Agric Econ, 2021, 42(7): 4-16 (in Chinese with English abstract). | |
[5] | 张雪莹, 刘欣. 转录因子与叶片发育的研究进展. 植物生理学报, 2022, 58: 91-100. |
Zhang X Y, Liu X. Research progress of transcription factors and leaf development. Plant Physiol J, 2022, 58: 91-100 (in Chinese with English abstract). | |
[6] | Balazadeh S, Riaño-Pachón D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Cell, 2008, 10: 63-75. |
[7] | Ng D W, Abeysinghe J K, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci, 2018, 19: 3737. |
[8] | Kong Q, Pattanaik S, Feller A, Werkman J R, Chai C L, Wang Y Q, Grotewold E, Yuan L. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci USA, 2012, 109: E2091-E2097. |
[9] | Pires N, Dolan L. Origin and diversification of basic-helix-loop- helix proteins in plants. Mol Biol Evol, 2010, 27: 862-874. |
[10] | Filiz E, Vatansever R, Ozyigit I I. Dissecting a co-expression network of basic helix-loop-helix (bHLH) genes from phosphate (Pi)-starved soybean (Glycine max). Plant Gene, 2017, 9: 19-25. |
[11] | Murre C, Bain G, van Dijk M A, Engel I, Furnari B A, Massari M E, Matthews J R, Quong M W, Rivera R R, Stuiver M H. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta, 1994, 1218: 129-135. |
[12] | Zhang Z S, Chen J, Liang C L, Liu F, Hou X L, Zou X X. Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.). Front Genet, 2020, 11: 570156. |
[13] | 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016. |
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161gene in maize. Acta Agron Sin, 2020, 46: 2008-2016 (in Chinese with English abstract). | |
[14] | Li X X, Duan X P, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y, Ma H, Wang J, Zhang D B. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Cell, 2006, 141: 1167-1184. |
[15] | Tian S Y, Li L J, Wei M, Yang F J. Genome-wide analysis of basic helix-loop-helix superfamily members related to anthocyanin biosynthesis in eggplant (Solanum melongena L.). PeerJ, 2019, 7: e7768. |
[16] | 冯建英, 李立芹, 鲁黎明. 马铃薯bHLH转录因子家族全基因组鉴定与表达分析. 生物技术通报, 2022, 38(2): 21-33. |
Feng J Y, Li L Q, Lu L M. Genome-wide identification and expression analysis of the bHLH transcription factor family in Solanum tuberosum. Plant Cell, 2022, 38(2): 21-33 (in Chinese with English abstract). | |
[17] | Daie J. Annual review of plant physiology and plant molecular biology. Soil Sci, 1992, 154: 508. |
[18] | Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Plant Cell, 2017, 160: 312-327. |
[19] | Zhao Q, Fan Z H, Qiu L N, Che Q Q, Wang T, Li Y Y, Wang Y Z. MdbHLH130, an apple bHLH transcription factor, confers water stress resistance by regulating stomatal closure and ROS homeostasis in transgenic tobacco. Front Plant Sci, 2020, 11: 543696. |
[20] | Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. Plant Cell, 2009, 166: 1296-1306. |
[21] | Busk P K, Pagès M. Regulation of abscisic acid-induced transcription. Plant Mol Biol, 1998, 37: 425-435. |
[22] | Suzuki M, Ketterling M G, Li Q B, McCarty D R. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol, 2003, 132: 1664-1677. |
[23] | Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470-3488. |
[24] | Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA, 1999, 96: 15348-15353. |
[25] | Casaretto J, Ho T H D. The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell, 2003, 15: 271-284. |
[26] | Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006, 103: 1988-1993. |
[27] | Takahashi Y, Kinoshita T, Matsumoto M, Shimazaki K. Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation. Plant J, 2016, 87: 559-567. |
[28] | Halterman D, Guenthner J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato Res, 2016, 93: 1-20. |
[29] | Suttle J. Symposium introduction:enhancing the nutritional value of potato tubers. Am J Potato Res, 2008, 85: 266. |
[30] | Liu F L, Shahnazari A, Andersen M N, Jacobsen S E, Jensen C R. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J Exp Bot, 2006, 57: 3727-3735. |
[31] | Muñiz García M N, Cortelezzi J I, Fumagalli M, Capiati D A. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. Plant Mol Biol, 2018, 98: 137-152. |
[32] | Muñiz García M N, Giammaria V, Grandellis C, Téllez-Iñón M T, Ulloa R M, Capiati D A. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta, 2012, 235: 761-778. |
[33] | Bai J P, Mao J, Yang H Y, Khan A, Fan A Q, Liu S Y, Zhang J L, Wang D, Gao H J, Zhang J L. Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genet, 2017, 18: 41. |
[34] | 刘维刚, 唐勋, 付学, 张欢欢, 朱存兰, 张宁, 司怀军. 马铃薯抗旱性研究进展. 中国马铃薯, 2022, 36: 358-369. |
Liu W G, Tang X, Fu X, Zhang H H, Zhu C L, Zhang N, Si H J. Research progress in drought tolerance of potato. Chin Potato J, 2022, 36: 358-369 (in Chinese with English abstract). | |
[35] | Bouaziz D, Ayadi M, Bidani A, Rouis S, Nouri-Ellouz O, Jellouli R, Drira N, Gargouri-Bouzid R. A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Sci, 2009, 176: 489-496. |
[36] | Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol, 2013, 54: 803-817. |
[37] | Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116. |
[38] | Li H M, Sun J Q, Xu Y X, Jiang H L, Wu X Y, Li C Y. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Cell, 2007, 65: 655-665. |
[39] | Yang T R, Yao S F, Hao L, Zhao Y Y, Lu W J, Xiao K. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep, 2016, 35: 2309-2323. |
[40] | Jiang Y Q, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009, 282: 503-516. |
[41] | Liu Y J, Ji X Y, Nie X G, Qu M, Zheng L, Tan Z L, Zhao H M, Huo L, Liu S N, Zhang B, Wang Y C. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207: 692-709. |
[42] | Khampheng B, 沈镭, 钟帅, 孙艳芝, 杨慧芹. 脯氨酸引发提高烟草种子和幼苗抗逆性及其与抗氧化系统的关系. 山西农业科学, 2019, 47(1): 39-48. |
Khampheng B, Shen L, Zhong S, Sun Y Z, Yang H Q. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming. J Shanxi Agric Sci, 2019, 47(1): 39-48 (in Chinese with English abstract). | |
[43] | Ji X Y, Nie X G, Liu Y J, Zheng L, Zhao H M, Zhang B, Huo L, Wang Y C. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol, 2016, 36: 193-207. |
[1] | WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotao [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311. |
[2] | GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133. |
[3] | QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309. |
[4] | YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236. |
[5] | LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933. |
[6] | GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013. |
[7] | ZHOU Hong-Yuan, YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling. Screening and functional identification of chlorogenic acid regulatory factors in potato [J]. Acta Agronomica Sinica, 2024, 50(7): 1740-1749. |
[8] | LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393. |
[9] | LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466. |
[10] | SUN Yi-Ming, TIAN Xia, WANG Shao-Xia, LIU Qing. Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1608-1615. |
[11] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
[12] | SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434. |
[13] | YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350. |
[14] | ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393. |
[15] | YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164. |
|