Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 548-556.doi: 10.3724/SP.J.1006.2025.44090

• RESEARCH NOTES • Previous Articles    

Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes

ZHAO Fei-Fei1,2(), LI Shao-Xiong2, LIU Hao2, LI Hai-Fen2, WANG Run-Feng2, HUANG Lu2, YU Qian-Xia2, HONG Yan-Bin2, CHEN Xiao-Ping2, LU Qing2,*(), CAO Yu-Man1,*()   

  1. 1College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou 510640, Guangdong, China
  • Received:2024-06-03 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-11
  • Contact: E-mail: yumancao@nwafu.edu.cn; E-mail: luqing2016@126.com
  • Supported by:
    National Key Research and Development Program of China(2023YFD1202800);China Agriculture Research System of MOF and MARA(CARS-13);Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan in Guangdong Province(2022SDZG05);Guangdong Provincial Key Research and Development Program-Modern Seed Industry(2022B0202060004);Special Support Program of Guangdong Province(2021TX06N789)

Abstract:

The internode length of the main stem and lateral branches is a key agronomic trait influencing the yield per plant in peanuts. In this study, 390 natural peanut populations were used to measure the length of the first, second, and third internodes of both the main stem and lateral branches at maturity. A genome-wide association analysis was conducted using the mixed linear model (PCA+K model) in GAPIT3.0 software. The results showed that the internode lengths of the main stem and lateral branches followed a normal distribution and were significantly positively correlated. A total of 63 loci associated with the internode length of the main stem and lateral branches were identified. Three significant association sites and site clusters were discovered, including a notable association at A04_57397319 that co-located with findings from previous research. Five candidate genes were predicted within this region. These findings provide valuable insights into the genetic basis and regulatory mechanisms of internode length in both the main stem and lateral branches of peanuts, laying a foundation for plant architecture improvement.

Key words: peanut, main stem internode length, lateral branch internode length, GWAS

Table 1

Statistical analysis of internode length-related traits in peanut population in 2017"

性状
Trait
最大值
Max.
最小值
Min.
平均值±标准数
Mean ± SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
主茎第一节间长度Main stem first internode length 6.00 1.00 2.09±0.61 0.29 1.953 8.880
主茎第二节间长度Main stem second internode length 3.50 0.50 1.55±0.56 0.36 0.560 0.149
主茎第三节间长度Main stem third internode length 4.25 0.26 1.64±0.63 0.38 0.818 1.175
侧枝第一节间长度Lateral branch first internode length 8.00 0.65 2.25±0.92 0.40 1.734 6.093
侧枝第二节间长度Lateral branch second internode length 7.00 1.00 2.40±0.85 0.35 1.526 4.486
侧枝第三节间长度Lateral branch third internode length 7.50 0.20 2.81±0.97 0.35 1.215 3.067

Fig. 1

Distribution of related characters of internode length in peanut associated population MSF: main stem first internode length; MSS: main stem second internode length; MST: main stem third internode length; LBF: lateral branch first internode length; LBS: lateral branch second internode length; LBT: lateral branch third internode length."

Fig. 2

Correlation coefficient between internode traits of the main stem and lateral branches of peanut Abbreviations are the same as those given in Fig. 1. ** indicates significant correlation at the 0.01 probability level."

Table 2

Significant association sites of node length traits of main stem and lateral branches"

性状
Trait
关联位点
Associated sites
染色体
Chromosome
位置
Position
P
P-value
MSF A01_106043972 A01 106,043,972 1.51E-07
A03_96536142 A03 96,536,142 1.08E-08
A04_57397319 A04 57,397,319 2.29E-07
A05_51337016 A05 51,337,016 1.08E-08
A05_74958968 A05 74,958,968 1.08E-08
A06_30420867 A06 30,420,867 1.08E-08
A07_34955668 A07 34,955,668 1.08E-08
A07_48095361 A07 48,095,361 3.72E-07
A07_49223806 A07 49,223,806 1.32E-07
A07_52783226 A07 52,783,226 1.61E-07
A07_58125963 A07 58,125,963 2.84E-07
A07_66360549 A07 66,360,549 3.09E-07
A07_71636384 A07 71,636,384 1.84E-07
A07_73981302 A07 73,981,302 1.62E-08
A07_75712072 A07 75,712,072 1.61E-07
A07_81744376 A07 81,744,376 6.20E-08
A07_83570736 A07 83,570,736 7.46E-08
A07_87296838 A07 87,296,838 1.08E-08
A07_93491105 A07 93,491,105 4.48E-08
A07_109121009 A07 109,121,009 1.61E-07
A07_111031457 A07 111,031,457 2.14E-07
A08_24070999 A08 24,070,999 1.08E-08
A09_62081202 A09 62,081,202 1.92E-07
A09_67453035 A09 67,453,035 2.71E-07
A10_37985014 A10 37,985,014 3.00E-07
B01_137273357 B01 137,273,357 1.08E-08
B02_49773743 B02 49,773,743 1.08E-08
B02_52441346 B02 52,441,346 1.45E-07
B04_14356520 B04 14,356,520 1.08E-08
B05_37369887 B05 37,369,887 1.08E-08
B05_153066632 B05 153,066,632 1.08E-08
B07_4160712 B07 4,160,712 1.21E-07
B08_21939742 B08 21,939,742 1.08E-08
B10_9639595 B10 9,639,595 1.08E-08
B10_13221609 B10 13,221,609 1.08E-08
B10_45639904 B10 45,639,904 3.66E-08
B10_119864830 B10 119,864,830 1.08E-08
B10_132271423 B10 132,271,423 1.08E-08
MST A01_73271598 A01 73,271,598 2.14E-07
LBF A01_23488952 A01 23,488,952 2.29E-07
A01_55372401 A01 55,372,401 2.14E-07
A01_68297303 A01 68,297,303 2.49E-07
A02_8875457 A02 8,875,457 2.61E-07
A03_2953786 A03 2,953,786 2.33E-07
A06_4380158 A06 4,380,158 2.68E-07
A06_86359952 A06 86,359,952 2.52E-07
A06_103855231 A06 103,855,231 2.60E-07
A07_129887507 A07 129,887,507 2.98E-07
A09_62083927 A09 62,083,927 2.05E-07
A09_114516939 A09 114,516,939 2.69E-07
A10_79235001 A10 79,235,001 2.37E-07
A10_104046269 A10 104,046,269 2.15E-07
B01_104941977 B01 104,941,977 2.96E-07
B01_150609234 B01 150,609,234 2.26E-07
B03_52115966 B03 52,115,966 2.80E-07
B03_143095996 B03 143,095,996 2.12E-07
B05_18845147 B05 18,845,147 2.10E-07
B05_95256042 B05 95,256,042 1.18E-07
B06_16502781 B06 16,502,781 3.12E-07
B06_42455491 B06 42,455,491 2.01E-07
B07_61224 B07 61,224 3.12E-07
B07_47200539 B07 47,200,539 2.01E-07

Fig. 3

Manhattan plot of genome-wide association analysis for main stem and lateral branch internode length in peanut"

Fig. 4

Manhattan diagram of candidate gene analysis"

Table 3

Notes on candidate genes"

染色体
Chr.
预测基因
Predictive genes
起始位置
Start
position
终止位置
End
position
描述
Description
功能
Function
PFAMs功能结构域
Functional domain of PFAMs
A04 Ahy_A04g019832 57,318,253 57,319,719 Asp_protease_2, Retrotrans_gag
A04 Ahy_A04g019833 57,392,913 57,401,960 清除剂mRNA解旋酶C端结合
Scavenger mRNA decapping enzyme C-term binding
HIT
A04 Ahy_A04g019834 57,405,637 57,406,221
A04 Ahy_A04g019835 57,410,765 57,415,546 肽基脯氨酰顺反异构酶
Peptidyl-prolyl cis-trans isomerase
FKBP_C, Ribosomal_S8e, TPR_1, TPR_2, TPR_8
A04 Ahy_A04g019837 57,493,974 57,498,876 肽基脯氨酰顺反异构酶
Peptidyl-prolyl cis-trans isomerase
FKBP15-2 FKBP_C

Fig. 5

Candidate gene expression analysis"

[1] Hammons R O, Herman D, Stalker H T. Origin and Early History of the Peanut. Peanuts. Amsterdam: AOCS, 2016. pp 1-26.
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115
[3] 付凌晖, 叶礼奇. 中国统计年鉴2023. 北京: 中国统计出版社, 2023. pp 386-403.
Fu L H, Ye L Q. China Statistical Yearbook 2023. Beijing: China Statistics Press, 2023. pp 386-403 (in Chinese).
[4] 郝西, 张俊, 高伟, 易明林, 刘娟, 臧秀旺. 中国花生生产成本与收益分析. 农业科技通讯, 2023, (11): 150-153.
Hao X, Zhang J, Gao W, Yi M L, Liu J, Zang X W. Cost and benefit analysis of peanut production in China. Bull Agric Sci Technol, 2023, (11): 150-153 (in Chinese).
[5] 刘晓慧. 基于碳排放的我国花生绿色全要素生产率评价研究. 山东农业大学硕士学位论文, 山东泰安, 2023.
Liu X H. Evaluation of Green Total Factor Productivity of Peanut in China Based on Carbon Emissions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).
[6] Donald C M. A barley breeding programme based on an ideotype. J Agric Sci, 1979, 93: 261-269.
[7] Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, Zhang H, He Z H, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. Plant Cell Environ, 2023, 46: 780-795.
[8] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527-535.
[9] Cheng Y X, Xiao F, Huang D Y, Yang Y, Cheng W D, Jin S C, Li G H, Ding Y F, Paul M J, Liu Z H. High canopy photosynthesis before anthesis explains the outstanding yield performance of rice cultivars with ideal plant architecture. Field Crops Res, 2024, 306: 109223.
[10] 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1-6.
doi: 10.11924/j.issn.1000-6850.casb20190900610
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: a review. Chin Agric Sci Bull, 2020, 36(29): 1-6 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20190900610
[11] Dermail A, Fuengtee A, Lertrat K, Suwarno W B, Lübberstedt T, Suriharn K. Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy, 2021, 12: 87.
[12] Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur, 2021, 10: e312.
[13] 李新国, 郭峰, 万书波. 高产花生理想株型的研究. 花生学报, 2013, 42(3): 23-26.
Li X G, Guo F, Wan S B. Peanut ideotypes with high yield. J Peanut Sci, 2013, 42(3): 23-26 (in Chinese with English abstract).
[14] Falster D S, Westoby M. Plant height and evolutionary games. Trends Ecol Evol, 2003, 18: 337-343.
[15] Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467
[16] Sarlikioti V, de Visser P H B, Buck-Sorlin G H, Marcelis L F M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot, 2011, 108: 1065-1073.
[17] 张佳蕾, 郭峰, 李新国, 杨莎, 耿耘, 孟静静, 张凤, 万书波. 提早化控对高产花生节间分布和产量构成的影响. 花生学报, 2017, 46(4): 63-67.
Zhang J L, Guo F, Li X G, Yang S, Geng Y, Meng J J, Zhang F, Wan S B. Effects of earlier chemical control on internode distribution and yield components of high yield peanut. J Peanut Sci, 2017, 46(4): 63-67 (in Chinese with English abstract).
[18] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757-3766.
doi: 10.3864/j.issn.0578-1752.2015.18.019
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757-3766 (in Chinese with English abstract).
[19] McKim S M. Moving on up - controlling internode growth. New Phytol, 2020, 226: 672-678.
doi: 10.1111/nph.16439 pmid: 31955426
[20] Li S C, Sun Z H, Sang Q, Qin C, Kong L P, Huang X, Liu H, Su T, Li H Y, He M L, Fang C, Wang L S, Liu S R, Liu B, Liu B H, Fu X D, Kong F J, Lu S J. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nat Commun, 2023, 14: 7939.
doi: 10.1038/s41467-023-42991-z pmid: 38040709
[21] Dayan J, Voronin N, Gong F, Sun T P, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell, 2012, 24: 66-79.
[22] Patil V, McDermott H I, McAllister T, Cummins M, Silva J C, Mollison E, Meikle R, Morris J, Hedley P E, Waugh R, Dockter C, Hansson M, McKim S M. APETALA2 control of barley internode elongation. Development, 2019, 146: dev170373.
[23] Li L, Cui S L, Dang P, Yang X L, Wei X J, Chen K, Liu L F, Chen C Y. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2022, 23: 403.
doi: 10.1186/s12864-022-08640-3 pmid: 35624420
[24] Zhang H, Chu Y, Dang P, Tang Y Y, Jiang T, Clevenger J P, Ozias-Akins P, Holbrook C, Wang M L, Campbell H, Hagan A, Chen C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Theor Appl Genet, 2020, 133: 2051-2061.
doi: 10.1007/s00122-020-03576-2 pmid: 32144466
[25] Wang J, Yan C X, Shi D C, Zhao X B, Yuan C L, Sun Q X, Mou Y F, Chen H N, Li Y, Li C J, Shan S H. The genetic base for peanut height-related traits revealed by a meta-analysis. Plants (Basel), 2021, 10: 1058.
[26] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540.
[27] 姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65-67.
Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 65-67 (in Chinese).
[28] Chen X P, Lu Q, Liu H, Zhang J N, Hong Y B, Lan H F, Li H F, Wang J P, Liu H Y, Li S X, Pandey M K, Zhang Z K, Zhou G Y, Yu J G, Zhang G Q, Yuan J Q, Li X Y, Wen S J, Meng F B, Yu S L, Wang X Y, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X Q. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920-934.
[29] Wang J B, Zhang Z W. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinform, 2021, 19: 629-640.
[30] Li Y J, Li L Z, Zhang X R, Zhang K, Ma D C, Liu J Q, Wang X J, Liu F Z, Wan Y S. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017, 213: 57.
[31] Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117
[32] 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能. 遗传, 2014, 36: 536-546.
Yu Y L, Li Y J, Pang K Y, Zhang F J, Sun Q, Li W C, Meng Z D. Structure and biological functions of plant FKBP family. Hereditas, 2014, 36: 536-546 (in Chinese with English abstract).
[33] 李鹏云. FKBP家族相关蛋白晶体结构及功能研究. 清华大学博士学位论文, 北京, 2003.
Li P Y.Study on Crystal Structure and Function of FKBP Family Related Proteins. PhD Dissertation of Tsinghua University, Beijing, China, 2003 (in Chinese with English abstract).
[34] Harding M W, Galat A, Uehling D E, Schreiber S L. A receptor for the immunosuppressant FK506 is a Cis-trans peptidyl-prolyl isomerase. Nature, 1989, 341: 758-760.
[35] Henrichs S, Wang B J, Fukao Y, Zhu J S, Charrier L, Bailly A, Oehring S C, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J, 2012, 31: 2965-2980.
doi: 10.1038/emboj.2012.120 pmid: 22549467
[36] Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui J C, Bellec Y, Renne C, Miquel M, Dacosta M, Vignard J, Rochat C, Markham J E, Moreau P, Napier J, Faure J D. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell, 2010, 22: 364-375.
[37] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016, 6: 39478.
doi: 10.1038/srep39478 pmid: 27995991
[38] Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472
[39] Lyu J W, Liu N, Guo J B, Xu Z J, Li X P, Li Z D, Luo H Y, Ren X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Tu J X, Jiang H F, Liao B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Front Plant Sci, 2018, 9: 684.
[1] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-695.
[2] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[3] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[4] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[5] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[6] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[7] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[8] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[9] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[10] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[11] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[12] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[13] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[14] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[15] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .