Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 548-556.doi: 10.3724/SP.J.1006.2025.44090

• RESEARCH NOTES • Previous Articles    

Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes

ZHAO Fei-Fei1,2,LI Shao-Xiong2,LIU Hao2,LI Hai-Fen2,WANG Run-Feng2,HUANG Lu2,YU Qian-Xia2,HONG Yan-Bin2,CHEN Xiao-Ping2,LU Qing2,*,CAO Yu-Man1,*   

  1. 1College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; 2 Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou 510640, Guangdong, China
  • Received:2024-06-03 Revised:2024-09-18 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-11
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1202800), the China Agriculture Research System of MOF and MARA (CARS-13), the Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan in Guangdong Province (2022SDZG05), the Guangdong Provincial Key Research and Development Program-Modern Seed Industry (2022B0202060004), and the Special Support Program of Guangdong Province (2021TX06N789).

Abstract:

The internode length of the main stem and lateral branches is a key agronomic trait influencing the yield per plant in peanuts. In this study, 390 natural peanut populations were used to measure the length of the first, second, and third internodes of both the main stem and lateral branches at maturity. A genome-wide association analysis was conducted using the mixed linear model (PCA+K model) in GAPIT3.0 software. The results showed that the internode lengths of the main stem and lateral branches followed a normal distribution and were significantly positively correlated. A total of 63 loci associated with the internode length of the main stem and lateral branches were identified. Three significant association sites and site clusters were discovered, including a notable association at A04_57397319 that co-located with findings from previous research. Five candidate genes were predicted within this region. These findings provide valuable insights into the genetic basis and regulatory mechanisms of internode length in both the main stem and lateral branches of peanuts, laying a foundation for plant architecture improvement.

Key words: peanut, main stem internode length, lateral branch internode length, GWAS

[1] Hammons R O, Herman D, Stalker H T. Origin and early history of the peanut. Peanuts. Amsterdam: Elsevier, 2016. pp 1–26.

[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161–166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161–166 (in Chinese with English abstract).

[3] 付凌晖, 叶礼奇. 中国统计年鉴2023. 北京: 中国统计出版社, 2023. pp 386–403.

Fu L H, Ye L Q. China Statistical Yearbook 2023. Beijing: China Statistics Press, 2023. pp 386–403 (in Chinese).

[4] 郝西, 张俊, 高伟, 易明林, 刘娟, 臧秀旺. 中国花生生产成本与收益分析. 农业科技通讯, 2023, (11): 150–153.

Hao X, Zhang J, Gao W, Yi M L, Liu J, Zang X W. Cost and benefit analysis of peanut production in China. Bull Agric Sci Technol, 2023, (11): 150–153 (in Chinese).

[5] 刘晓慧. 基于碳排放的我国花生绿色全要素生产率评价研究. 山东农业大学硕士学位论文, 山东泰安, 2023.
Liu X H. Evaluation of Green Total Factor Productivity of Peanut in China Based on Carbon Emissions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).

[6] Donald C M. A barley breeding programme based on an ideotype. J Agric Sci, 1979, 93: 261–269.

[7] Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, Zhang H, He Z H, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. Plant Cell Environ, 2023, 46: 780–795.

[8] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527–535.

[9] Cheng Y X, Xiao F, Huang D Y, Yang Y, Cheng W D, Jin S C, Li G H, Ding Y F, Paul M J, Liu Z H. High canopy photosynthesis before anthesis explains the outstanding yield performance of rice cultivars with ideal plant architecture. Field Crops Res, 2024, 306: 109223.

[10] 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1–6.
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: a review. Chin Agric Sci Bull, 2020, 36(29): 1–6 (in Chinese with English abstract).

[11] Dermail A, Fuengtee A, Lertrat K, Suwarno W B, Lübberstedt T, Suriharn K. Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy, 2021, 12: 87.

[12] Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur, 2021, 10: e312.

[13] 李新国, 郭峰, 万书波. 高产花生理想株型的研究. 花生学报, 2013, 42(3): 23–26.
Li X G, Guo F, Wan S B. Peanut ideotypes with high yield. J Peanut Sci, 2013, 42(3): 23–26 (in Chinese with English abstract).

[14] Falster D S, Westoby M. Plant height and evolutionary games. Trends Ecol Evol, 2003, 18: 337–343.

[15] Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454–461.

[16] Sarlikioti V, de Visser P H B, Buck-Sorlin G H, Marcelis L F M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot, 2011, 108: 1065–1073.

[17] 张佳蕾, 郭峰, 李新国, 杨莎, 耿耘, 孟静静, 张凤, 万书波. 提早化控对高产花生节间分布和产量构成的影响. 花生学报, 2017, 46(4): 63–67.

  Zhang J L, Guo F, Li X G, Yang S, Geng Y, Meng J J, Zhang F, Wan S B. Effects of earlier chemical control on internode distribution and yield components of high yield peanut. J Peanut Sci, 2017, 46(4): 63–67 (in Chinese with English abstract).

[18] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757–3766.
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757–3766 (in Chinese with English abstract).

[19] McKim S M. Moving on up - controlling internode growth. New Phytol, 2020, 226: 672–678.

[20] Li S C, Sun Z H, Sang Q, Qin C, Kong L P, Huang X, Liu H, Su T, Li H Y, He M L, Fang C, Wang L S, Liu S R, Liu B, Liu B H, Fu X D, Kong F J, Lu S J. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nat Commun, 2023, 14: 7939.

[21] Dayan J, Voronin N, Gong F, Sun T P, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell, 2012, 24: 66–79.

[22] Patil V, McDermott H I, McAllister T, Cummins M, Silva J C, Mollison E, Meikle R, Morris J, Hedley P E, Waugh R, Dockter C, Hansson M, McKim S M. APETALA2 control of barley internode elongation. Development, 2019, 146: dev170373.

[23] Li L, Cui S L, Dang P, Yang X L, Wei X J, Chen K, Liu L F, Chen C Y. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2022, 23: 403.

[24] Zhang H, Chu Y, Dang P, Tang Y Y, Jiang T, Clevenger J P, Ozias-Akins P, Holbrook C, Wang M L, Campbell H, Hagan A, Chen C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Theor Appl Genet, 2020, 133: 2051–2061.

[25] Wang J, Yan C X, Shi D C, Zhao X B, Yuan C L, Sun Q X, Mou Y F, Chen H N, Li Y, Li C J, Shan S H. The genetic base for peanut height-related traits revealed by a meta-analysis. Plants (Basel), 2021, 10: 1058.

[26] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530–540.

[27] 姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65–67.

Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 65–67 (in Chinese).

[28] Chen X P, Lu Q, Liu H, Zhang J N, Hong Y B, Lan H F, Li H F, Wang J P, Liu H Y, Li S X, Pandey M K, Zhang Z K, Zhou G Y, Yu J G, Zhang G Q, Yuan J Q, Li X Y, Wen S J, Meng F B, Yu S L, Wang X Y, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X Q. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920–934.

[29] Wang J B, Zhang Z W. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinform, 2021, 19: 629–640.

[30] Li Y J, Li L Z, Zhang X R, Zhang K, Ma D C, Liu J Q, Wang X J, Liu F Z, Wan Y S. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017, 213: 57.

[31] Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115–2122.

[32] 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能. 遗传, 2014, 36: 536–546.
Yu Y L, Li Y J, Pang K Y, Zhang F J, Sun Q, Li W C, Meng Z D. Structure and biological functions of plant FKBP family. Hereditas, 2014, 36: 536–546 (in Chinese with English abstract).

[33] 李鹏云. FKBP家族相关蛋白晶体结构及功能研究. 清华大学博士学位论文, 北京, 2003.

Li P Y. Study on Crystal Structure and Function of FKBP Family Related Proteins. PhD Dissertation of Tsinghua University, Beijing, China, 2003 (in Chinese with English abstract).

[34] Harding M W, Galat A, Uehling D E, Schreiber S L. A receptor for the immunosuppressant FK506 is a Cis-trans peptidyl-prolyl isomerase. Nature, 1989, 341: 758–760.

[35] Henrichs S, Wang B J, Fukao Y, Zhu J S, Charrier L, Bailly A, Oehring S C, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J, 2012, 31: 2965–2980.

[36] Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui J C, Bellec Y, Renne C, Miquel M, Dacosta M, Vignard J, Rochat C, Markham J E, Moreau P, Napier J, Faure J D. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell, 2010, 22: 364–375.

[37] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016, 6: 39478.

[38] Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.

[39] Lyu J W, Liu N, Guo J B, Xu Z J, Li X P, Li Z D, Luo H Y, Ren X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Tu J X, Jiang H F, Liao B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Front Plant Sci, 2018, 9: 684.

[1] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[2] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[3] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[4] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[5] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[6] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[7] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[8] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[9] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[10] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[11] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[12] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[13] JIN Xin-Xin, SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Metabolome and transcriptome analysis of flavonoids in peanut testa [J]. Acta Agronomica Sinica, 2024, 50(12): 2950-2961.
[14] ZHAO Wei, HU Xiao-Na, ZHENG Yan, LIANG Na, ZHENG Bin, WANG Xiao-Xiao, WANG Jiang-Tao, LIU Ling, FU Guo-Zhan, SHI Zhao-Yong, JIAO Nian-Yuan. Characteristics of AMF community in maize and peanut rhizosphere soil and its response to phosphate application [J]. Acta Agronomica Sinica, 2024, 50(11): 2896-2907.
[15] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!