Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2033-2047.doi: 10.3724/SP.J.1006.2025.51023

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture

LU Xiang-Qian1(), FU Yu-Jie1, ZHAO Jun-Heng1, ZHENG Nan-Nan1, SUN Nan-Nan1, ZHANG Guo-Ping1,2, YE Ling-Zhen1,2,*()   

  1. 1Center for Biological Design and Breeding, Zhongyuan Research Institute, Zhejiang University, Zhengzhou 450000, Henan, China
    2Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2025-03-03 Accepted:2025-06-01 Online:2025-08-12 Published:2025-06-10
  • Contact: *E-mail: yelingzhen@zju.edu.cn
  • Supported by:
    Ningbo Science and Technology Plan Project(2023S154);Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding(2021C02064-3)

Abstract:

Haploid breeding based on anther culture is an important method for the efficient selection of wheat varieties. However, the efficiency of anther culture varies significantly among different wheat genotypes, which limits its broader application in wheat breeding. To date, a few wheat lines with high anther culture efficiency—such as Shi4185, H307, and Zhoumai16—have been identified. Nevertheless, there remains a lack of sufficient high-performing materials to support large-scale application of this technique. In this study, we systematically evaluated anther culture-related traits in 94 wheat varieties grown under greenhouse conditions. The optimal anther sampling stage for these varieties was determined to occur when the distance between the tip of the developing spike and the leaf auricle ranged from -5 cm to 2 cm, with the highest sampling frequency observed at -2 cm. Notably, spike morphological characteristics associated with the optimal sampling period differed between plants grown under greenhouse and field conditions. Among the 94 greenhouse-grown varieties, the callus induction rate, green shoot differentiation rate, albino shoot differentiation rate, and green plantlet production rate during anther culture ranged from 0-15%, 0-100%, 0-60%, and 0-22.95%, respectively. The callus induction rate showed highly significant positive correlations with the green shoot differentiation rate, albino shoot differentiation rate, and green plantlet production rate. Moreover, the callus induction rate exhibited consistent performance across both greenhouse and field conditions. Of the 94 varieties tested, fourteen exhibited green plantlet production rates exceeding 1%, and six varieties met the criteria for high anther culture efficiency while also demonstrating excellent agronomic traits. These varieties represent valuable germplasm resources for haploid breeding in wheat. This study provides practical techniques and genetic materials to support the advancement of wheat haploid breeding programs.

Key words: wheat, double haploid, anther culture, high anther culture ability, breeding application

Table S1

Traits of anther culturing ability of 94 wheat varieties grown in greenhouse"

品种
Variety
愈伤诱导率
Callus induction rate
(%)
绿芽分化率
Green shoot
differentiation rate
(%)
绿苗产率
Green plantlet
production rate
(%)
白芽分化率
Albino shoot
differentiation rate
(%)
取样特征
Sampling
feature
(cm)
淮麦20 Huaimai 20 0 0 0 0 -1
宿0663 Su 0663 0 0 0 0 -2
阜936 Fu 936 0 0 0 0 -2
宿农6号 Sunong 6 0 0 0 0 -2
皖麦33 Wanmai 33 0.97 0 0 0 -3
皖麦52 Wanmai 52 1.15 0 0 0 -3
皖麦50 Wanmai 50 0 0 0 0 -3
皖麦29 Wanmai 29 0 0 0 0 -5
皖麦53 Wanmai 53 0 0 0 0 -2
石新828 Shixin 828 0 0 0 0 0
石家庄15 Shijiazhuang 15 3.33 20.00 1.33 60.00 -1
衡7228 Heng 7228 9.76 83.33 6.50 16.67 -1
冀师02-1 Jishi 02-1 0 0 0 0 1
石新733 Shixin 733 0 0 0 0 -3
石4185 Shi 4185 14.29 55.56 15.87 22.22 0
高优503 Gaoyou 503 0 0 0 0 -3
藁城8901 Gaocheng 8901 0 0 0 0 -2
石家庄8号 Shijiazhuang 8 0.92 0 0 0 -2
石优17 Shiyou 17 0 0 0 0 0
衡观33 Hengguan 33 2.00 0 0 0 -2
偃展4110 Yanzhan 4110 1.27 0 0 0 -2
百农3217 Bainong 3217 1.54 50.00 0 0 -2
豫麦13 Yumai 13 9.52 0 0 33.33 1
中麦895 Zhongmai 895 6.48 14.29 3.70 28.57 -2
周麦19 Zhoumai 19 6.60 0 0 0 0
新麦9408 Xinmai 9408 1.41 0 0 0 -1
豫麦21 Yumai 21 0 0 0 0 0
豫麦47 Yumai 47 0 0 0 0 2
周麦25 Zhoumai 25 8.94 0 0 18.75 -3
兰考2号 Lankao 2 0 0 0 0 -2
中麦871 Zhongmai 871 0 0 0 0 -3
豫麦49 Yumai 49 2.59 0 0 0 -2
新麦9号 Xinmai 9 0 0 0 0 -3
兰考906 Lankao 906 14.00 0 0 0 -3
洛旱2号 Luohan 2 2.59 66.67 10.34 33.33 -2
豫麦57 Yumai 57 0 0 0 0 -2
豫麦18 Yumai 18 0 0 0 0 -4
周麦12 Zhoumai 12 1.20 0 0 0 -2
矮抗58 Aikang 58 0 0 0 0 -2
周麦30 Zhoumai 30 1.72 0 0 0 -2
豫麦34 Yumai 34 0 0 0 0 -3
豫麦7号 Yumai 7 4.69 0 0 16.67 -5
郑麦366 Zhengmai 366 0 0 0 0 0
中育5号 Zhongyu 5 1.36 0 0 0 -2
周麦32 Zhoumai 32 2.82 0 0 0 -2
中育9号 Zhongyu 9 9.02 0 0 27.27 -4
郑引1号 Zhengyin 1 0 0 0 0 -4
豫麦50 Yumai 50 0 0 0 0 -5
周麦23 Zhoumai 23 0 0 0 0 -1
周麦28 Zhoumai 28 1.53 0 0 33.33 -2
豫麦2号 Yumai 2 15.00 46.67 8.00 26.67 -1
周麦26 Zhoumai 26 0 0 0 0 -1
中麦875 Zhongmai 875 5.53 7.69 0.85 23.08 -2
花培5号 Huapei 5 2.36 0 0 0 -1
兰考24 Lankao 24 6.32 45.45 5.75 9.09 -3
济麦20 Jimai 20 0 0 0 0 -2
鲁麦9号 Lumai 9 0.49 0 0 0 -2
汶农5号 Wennong 5 0 0 0 0 -3
烟农18 Yannong 18 1.83 25.00 3.20 0 -5
鲁麦14 Lumai 14 2.50 40.00 2.50 0 -4
济宁16 Jining 16 0 0 0 0 -3
烟农15 Yannong 15 10.49 0 0 0 -4
鲁麦21 Lumai 21 6.06 0 0 50.00 -3
淄选2号 Zixuan 2 0.96 0 0 0 -2
泰山1号 Taishan 1 1.78 66.67 4.14 0 -2
济南17 Jinan 17 0 0 0 0 -1
汶农14 Wennong 14 7.41 0 0 10.00 -3
鲁麦8号 Lumai 8 0 0 0 0 -3
良星99 Liangxing 99 0 0 0 0 -3
鲁原502 Luyuan 502 1.50 0 0 0 -2
泰山5号 Taishan 5 1.18 100.00 2.35 0 -1
济麦21 Jimai 21 0 0 0 0 -3
鲁麦23 Lumai 23 0 0 0 0 -4
山农20 Shannong 20 4.07 0 0 0 -1
临麦4号 Linmai 4 0 0 0 0 -3
临抗12 Linkang 12 0 0 0 0 -4
碧蚂1号 Bima 1 1.69 0 0 0 -1
陕农78-59 Shaannong 78-59 1.80 0 0 0 -2
陕麦509 Shaanmai 509 3.25 25.00 1.63 0 -1
西农979-005 Xinong 979-005 2.48 0 0 0 -2
西农2000-7 Xinong 2000-7 0 0 0 0 0
陕麦354 Shaanmai 354 0.45 0 0 0 0
西农291 Xinong 291 5.00 20.00 0 0 -2
小偃54 Xiaoyan 54 0 0 0 0 0
小偃6号 Xiaoyan 6 0 0 0 0 -4
西农1376 Xinong 1376 14.75 83.33 22.95 0 -2
陕麦512 Shaanmai 512 1.95 25.00 0.98 0 -3
矮丰3号 Aifeng 3 0 0 0 0 -4
陕优225 Shaanyou 225 0 0 0 0 -2
武农148 Wunong 148 0 0 0 0 -3
陕麦229 Shaanmai 229 0 0 0 0 -5
小偃81 Xiaoyan 81 0 0 0 0 -4
陕麦94 Shaanmai 94 6.67 0 0 44.44 -2
碧蚂4号 Bima 4 1.91 0 0 0 -2

Table 1

Components of various media during wheat anther culture"

培养基种类
Medium type
基本培养基
Basic medium
外源物1
Additive 1
(mg L-1)
外源物2
Additive 2
(mg L-1)
蔗糖含量
Sucrose content
(g L-1)
琼脂含量
Agar content
(g L-1)
诱导培养基
Induction medium
C17 2,4D (2.0) KT (0.5) 90.0 7.0
分化培养基
Differentiation medium
MS NAA (1.0) KT (1.0) 30.0 5.0
壮根培养基
Strong root medium
1/2MS MET (3.0) KT (1.0) 80.0 8.0

Fig. 1

Microscopic examination and panicle appearance morphological difference of wheat microspore development during optimal sampling stage A1: early mononuclear stage; A2: mononuclear metaphase; A3: late mononuclear stage; A4: dinuclear phase; A5: triple nucleus stage; scale bar is 20 μm. B: the arrow points to the top of the spike, and the morphological differences in the spike are reflected in the length from the top of the spike to the auricle of the leaf; scale bar is 1 cm. C: spike morphological differences of 94 greenhouse wheat varieties during the optimal sampling window period. D: comparison of spike morphology of 35 wheat varieties at the optimal sampling period in two growth environments."

Table S2

Callusinduction rates and sampling feature of 35 wheat varieties grown in the field"

品种
Variety
愈伤诱导率
Callus induction rate (%)
取样特征
Sampling
feature (cm)
品种
Variety
愈伤诱导率
Callus induction rate (%)
取样特征
Sampling
feature (cm)
西农1376 Xinong 1376 2.8986 -3 周麦19 Zhoumai 19 3.0769 0
石4185 Shi 4185 5.8065 0 兰考906 Lankao 906 17.0455 -2
豫麦2号Yumai 2 3.3333 -1 山农20 Shannong 20 2.4390 -1
衡7228 Heng 7228 0 -1 烟农15 Yannong 15 0 -3
中麦895 Zhongmai 895 4.7619 -1 百农3217 Bainong 3217 0.5236 -2
中麦875 Zhongmai 875 1.8692 -2 鲁麦9号Lumai 9 1.3333 -2
豫麦18 Yumai 18 0 -3 宿0663 Su 0663 2.1277 -1
偃展4110 Yanzhan 4110 6.2500 -1 济宁16 Jining 16 2.8571 -2
鲁麦21 Lumai 21 7.8431 -2 石新733 Shixin 733 1.7964 -2
郑麦366 Zhengmai 366 1.4493 0 皖麦33 Wanmai 33 0 -3
豫麦49 Yumai 49 0 -1 周麦25 Zhoumai 25 0 -3
豫麦21 Yumai 21 0 0 豫麦34 Yumai 34 0 -2
周麦32 Zhoumai 32 2.5000 -2 郑引1号Zhengyin 1 0 -3
花培5号Huapei 5 13.8298 0 周麦23 Zhoumai 23 0.6452 0
陕麦94 Shaanmai 94 3.1915 -2 周麦26 Zhoumai 26 0 -1
豫麦13 Yumai 13 0 0 石优17 Shiyou 17 2.8571 0
汶农14 Wennong 14 0 -2 衡观33 Hengguan 33 0.6667 -2
中育9号Zhongyu 9 13.1387 -2

Table 2

Values of related indexes for anther culture ability in 94 wheat varieties"

花培力指标
Index of anther culture ability
数量Number 范围
Range
均值
Mean
标准差
SD
方差
Variance
愈伤诱导率 Callus induction rate 94 0-0.150 0.023 0.037 0.001
绿芽分化率 Green shoot differentiation 49 0-1.000 0.158 0.270 0.073
白芽分化率 Albino shoot differentiation rate 49 0-0.600 0.093 0.155 0.024
绿苗产率 Green plantlet production rate 49 0-0.230 0.020 0.047 0.002

Fig. 2

Key stages in wheat anther culture and frequency distribution of associated traits across varieties A, C, E, and G: frequency distribution of wheat varieties with associated traits; B: callus; D: green shoots and albino shoots; F: green plantlets and albino plantlets; F: chromosome doubling. Scale bars in Figs B, D, F, and H are 1 mm, 1 cm, 2 cm, and 5 cm, respectively."

Fig. 3

Correlations among anther culture ability traits In figure A, B, C, and D, r denotes the Spearman correlation coefficient between any two anther culture-related traits. All correlations are highly significant, with P-value less than 0.0001."

Fig. 4

Bland-Altman plot comparing callus induction rates of wheat anther culture in two growing environments In the figure, Y-axis is the difference of callus induction rate, and X-axis is the average value of callus induction rate, the upper and lower two red dashed lines indicate the 95% limits of agreement (mean difference ± 1.96SD), the black dashed line in the middle represents the mean value of the difference (Bias = 0.041), and the black solid line in the middle represents the 0 value, the sample size is 35 varieties."

Table 3

Agronomic traits of wheat varieties with high anther culture ability"

品种
Variety
株高
Plant height
(cm)
穗粒数
Kernels per spike
千粒重
TKW
(g)
品种特性
Varietal characteristic
参考
Reference
西农1376 Xinong 1376 73.33 35.50 42.06 早熟、高产, 遗传转化率高
Early maturity, high yield, high genetic transform rate
[19]
石4185
Shi 4185
78.00 34.00 37.00 花培育种优良亲本
Excellent parent for breeding by anther culture
农博数据, [18]
Nongbo data, [18]
豫麦2号
Yumai 2
85.00 36.00-38.00 广适、丰产, 骨干亲本
Widely suitable, fertile, backbone parent
农博数据, [20]
Nongbo data, [20]
衡7228
Heng 7228
75.00 37.00 40.00 高产、节水
High yield, water economy
农博数据 Nongbo data
兰考24
Lankao 24
73.67 46.29 41.41 河南荥阳测定
Measured in Xingyang, Henan province
中麦895
Zhongmai 895
70-75 35.00 48.00-52.00 高产、耐热 High yield, heat resistance 农博数据, [21]
Nongbo data, [21]

Table 4

Comparison of anther culture effects among varieties"

品种
Variety
愈伤诱导率
Callus induction rate (%)
绿芽分化率
Green shoot
differentiation rate (%)
绿苗产率
Green plantlet
production rate (%)
白芽分化率
Albino shoot
differentiation rate (%)
参考
Reference
藁城8901 0 0 0 0 本研究 This study
Gaocheng 8901 4.94 9.57 0.39 11.90 [15]
偃展4110 1.27 0 0 0 本研究 This study
Yanzhan 4110 3.97 0 0 0 [15]
洛旱2号 2.59 66.67 10.34 33.33 本研究 This study
Luohan 2 9.33 0 0 1.28 [15]
石4185 14.29 55.56 15.87 22.22 本研究 This study
Shi 4185 6.67 29.45 2.39 1.67 [15]

Table S3

Information of test varieties"

品种
Variety
育成年份
Year of
cultivation
亲本
Parent
泰山5号Taishan 5 1975 (辉县红×阿勃) F1×白欧柔(Huixianhong×Abo) F1×Bai’ourou
藁城8901 Gaocheng 8901 1990 冀麦26×鲁麦1号Jimai 26×Lumai 1
西农1376 Xinong 1376 1992 西农84G6×比16 Xinong 84G6×Bi 16
陕优225 Shaanyou 225 1992 小偃6号×NS2761 Xiaoyan 6×NS2761
新麦9408 Xinmai 9408 1994 新麦9号×豫麦21 Xinmai 9×Yumai 21
豫麦34 Yumai 34 1994 豫麦13×鲁麦14 Yumai 13×Lumai 14
陕麦229 Shaanmai 229 1995 (小偃6号×陕7853) F1×TB902 (Xiaoyan 6×Shaan7853) F1×TB902
鲁麦21 Lumai 21 1996 烟中144×宝丰7228 Yanzhong 144×Baofeng 7228
鲁麦23 Lumai 23 1996 鲁麦8号×高赖小麦Lumai 8×Gaolaixiaomai
淮麦20 Huaimai 20 1997 豫麦13×鲁麦14 Yumai 13×Lumai 14
皖麦33 Wanmai 33 1997 安农2号×百农3217 Annong 2×Bainong 3217
豫麦47 Yumai 47 1997 豫麦13×鲁麦14 Yumai 13×Lumai 14
皖麦29 Wanmai 29


1997


(一粒小麦×阿夫乐尔) F0射线处理/NPFP-5442/3/ALONDRA/4/2411/矮丰3号//7679-29-2-2
(Einkorn wheat × Avrora) F0 treated by ray /NPFP-5442/3/ALONDRA/4/2411/ Aifeng 3//7679-29-2-2
石新733 Shixin 733 1998 大拇指矮×石新163 Damuzhi’ai×Shixin 163
豫麦57 Yumai 57 1999 豫麦18×80 (6)-3-3-10 Yumai 18×80 (6)-3-3-10
高优503 Gaoyou 503 2001 豫麦34×鲁麦14 Yumai 34×Lumai 14
陕麦512 Shaanmai 512 2001 陕麦150MS2×陕354 Shaanmai 150MS2×Shaan 354
兰考906 Lankao 906 2001
中育5号Zhongyu 5 2001 冀5418×豫西832 Ji 5418×Yuxi 832
小偃81 Xiaoyan 81 2001 小偃54×8602 Xiaoyan 54×8602
陕农78-59 Shaannong 78-59 2002
偃展4110 Yanzhan 4110 2003 偃展1号×豫麦18 Yanzhan 1×Yumai 18
周麦19 Zhoumai 19 2003 周麦13×豫麦49 Zhoumai 13×Yumai 49
矮抗58 Aikang 58 2003 周麦11×豫麦49 Zhoumai 11×Yumai 49
济麦20 Jimai 20 2003 济麦19×鲁麦14 Jimai 19×Lumai 14
新麦9号Xinmai 9 2003 百泉3047-3×内乡82C6 Baiquan 3047-3×Neixiang 82C6
汶农5号Wennong 5 2003 鲁麦21号×泰山5号Lumai 21×Taishan 5
中育9号Zhongyu 9 2004 豫麦21号×92R139 Yumai 21×92R139
济宁16 Jining 16 2004 (烟1934/824046) F1×(聊83-1/2114) F1 (Yan 1934/824046) F1×(Liao 83-1/2114) F1
石家庄8号 Shijiazhuang 8 2005 石4185×石新733 Shi 4185×Shixin 733
洛旱2号Luohan 2 2005 豫麦18×洛旱1号Yumai 18×Luohan 1
郑麦366 Zhengmai 366 2005 豫麦34×周麦16 Yumai 34×Zhoumai 16
良星99 Liangxing 99 2005 济麦20×鲁麦23 Jimai 20×Lumai 23
阜936 Fu 936 2005 (皖麦20×冀5418) F1×内乡184 (Wanmai 20×Ji 5418) F1×Neixiang 184
皖麦52 Wanmai 52 2005 郑州8329×皖麦19 Zhengzhou 8329×Wanmai 19
皖麦50 Wanmai 50 2005 豫麦29×皖麦19 Yumai 29×Wanmai 19
皖麦53 Wanmai 53 2005 豫麦29×皖麦19 Yumai 29×Wanmai 19
衡7228 Heng 7228 2005 冀5418×衡5041 Ji 5418×Heng 5041
石优17 Shiyou 17 2005 冀935352×鲁麦21 Ji 935352×Lumai 21
衡观33 Hengguan 33 2006 衡7228×石4185 Heng 7228×Shi 4185
济麦21 Jimai 21 2006 济麦19×鲁麦14 Jimai 19×Lumai 14
花培5号Huapei 5 2006 豫麦18×花4-3 Yumai 18×Hua 4-3
临麦4号Linmai 4 2006 鲁麦23号×临9015 Lumai 23×Lin 9015
西农2000-7 Xinong 2000-7
2006
(西农2611×386) F1×(小偃22×陕354) F1 (Xinong 2611×386) F1×(Xiaoyan 22×Shaan 354) F1
周麦25 Zhoumai 25 2008 周麦16×豫麦49 Zhoumai 16×Yumai 49
中麦895 Zhongmai 895 2010 中麦16×周麦18 Zhongmai 16×Zhoumai 18
周麦23 Zhoumai 23 2010 周麦16×豫麦49 Zhoumai 16×Yumai 49
鲁原502 Luyuan 502 2010 济麦22×鲁麦14 Jimai 22×Lumai 14
汶农14 Wennong 14 2010 系84139//9215/876161 Xi 84139//9215/876161
周麦26 Zhoumai 26 2012 周麦16×百农64 Zhoumai 16×Bainong 64
周麦28 Zhoumai 28 2013 周麦16×周麦22 Zhoumai 16×Zhoumai 22
石新828 Shixin 828 2013 石新163×石新422 Shixin 163×Shixin 422
周麦32 Zhoumai 32 2014 矮抗58×周麦24 Aikang 58×Zhoumai 24
中麦875 Zhongmai 875 2014 周麦16×荔垦4号Zhoumai 16×Liken 4
周麦30 Zhoumai 30 2015 周麦22×周麦18 Zhoumai 22×Zhoumai 18
山农20 Shannong 20 2015 济麦22×山农15 Jimai 22×Shannong 15
碧蚂1号Bima 1 1950s 碧玉麦×蚂蚱麦Biyumai×Mazhamai
碧蚂4号Bima 4 1950s 碧玉麦×蚂蚱麦Biyumai×Mazhamai
郑引1号Zhengyin 1 1960s 引自意大利的Strampelli from Italian strampelli
豫麦2号Yumai 2 1970s 碧蚂4号×阿夫Bima 4×Funo
泰山1号Taishan 1 1970s 碧蚂4号×欧柔Bima 4×Ourou
豫麦13 Yumai 13 1980s 郑州761×偃师4号Zhengzhou 761×Yanshi 4
豫麦21 Yumai 21 1980s 郑州761×偃师9号Zhengzhou 761×Yanshi 9
豫麦18 Yumai 18 1980s 豫麦2号×偃师4号Yumai 2×Yanshi 4
豫麦7号Yumai 7 1980s 郑州761×偃师4号 Zhengzhou 761×Yanshi 4
鲁麦9号Lumai 9 1980s 泰山1号×鲁麦5号Taishan 1×Lumai 5
鲁麦14 Lumai 14 1980s 泰山1号×鲁麦5号Taishan 1×Lumai 5
烟农15 Yannong 15 1980s 烟农73×鲁麦1号Yannong 73×Lumai 1
鲁麦8号Lumai 8 1980s 泰山1号×鲁麦5号Taishan 1×Lumai 5
小偃6号Xiaoyan 6 1980s 小偃5号×中间偃麦草Xiaoyan 5×Zhongjianyanmaicao
石4185 Shi 4185 1990s 冀麦30×鲁麦14 Jimai 30×Lumai 14
百农3217 Bainong 3217 1990s 百农791×豫麦13 Bainong 791×Yumai 13
豫麦49 Yumai 49 1990s 豫麦13×鲁麦14 Yumai 13×Lumai 14
烟农18 Yannong 18 1990s 烟农15×鲁麦14 Yannong 15×Lumai 14
济南17 Jinan 17 1990s 鲁麦14×济南13 Lumai 14×Jinan 13
石家庄15 Shijiazhuang 15 2000s 石4185×冀麦38 Shi 4185×Jimai 38
西农979-005 Xinong 979-005 2010s 西农979×周麦18 Xinong 979×Zhoumai 18
矮丰3号Aifeng 3 咸农39号×丰产3号Xiannong 39×Fengchan 3
周麦12 Zhoumai 12 周8425A×SWD73295 Zhou 8425A×SWD73295
宿0663 Su 0663
宿农6号Sunong 6
冀师02-1 Jishi 02-1
兰考2号Lankao 2
中麦871 Zhongmai 871
豫麦50 Yumai 50
兰考24 Lankao 24
淄选2号Zixuan 2
临抗12 Linkang 12
陕麦509 Shaanmai 509
陕麦354 Shaanmai 354
西农291 Xinong 291
小偃54 Xiaoyan 54
武农148 Wunong 148
陕麦94 Shaanmai 94
[1] Ferrie A M R, Bhowmik P, Rajagopalan N, Kagale S. CRISPR/Cas9-mediated targeted mutagenesis in wheat doubled haploids. Methods Mol Biol, 2020, 2072: 183-198.
doi: 10.1007/978-1-4939-9865-4_15 pmid: 31541447
[2] Srivastava P, Bains N S. Biotechnol Crop Improvement, Volume 1. Switzerland: Springer International Publishing AG, 2018.
[3] Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y. Developments and prospects for doubled haploid wheat. Biotechnol Adv, 2022, 60: 108007.
[4] 王炜, 叶春雷, 杨随庄, 陈琛, 罗俊杰. 花药培养技术在小麦种质资源创制及育种中的应用. 中国种业, 2018, (11): 25-29.
Wang W, Ye C L, Yang S Z, Chen C, Luo J J. Application of Anther culture technique in wheat germplasm creation and breeding. China Seed Ind, 2018, (11): 25-29 (in Chinese with English abstract).
[5] 李辉, 陈孝, 辛志勇, 马有志, 徐惠君. 普通小麦-簇毛麦6DL/6VS抗白粉病易位系的选育及鉴定. 中国农业科学, 1999, 32: 9-17.
doi: 10.3864/j.issn.0578-1752.1999-32-05-9-17
Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J. Development and identification of wheat-Haynaldia villosa 6DL/6VS translocation lines with powdery mildew resistance. Sci Agric Sin, 1999, 32: 9-17 (in Chinese with English abstract).
[6] 翁跃进, 董玉琛. 普通小麦-顶芒山羊草异源附加系的创建和鉴定: I. 小麦花药培养对创建普通小麦-顶芒山羊草异源附加系的作用. 作物学报, 1995, 21: 39-44.
Weng Y J, Dong Y C. Development of Aegilops comosa addition lines in common wheat (Triticum aestivum L.): I. effection of wheat anther culture to development of Aegilops comosa addition lines in common wheat. Acta Agron Sin, 1995, 21: 39-44 (in Chinese with English abstract).
[7] 刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶. 植物诱发突变技术育种研究现状与展望. 核农学报, 2009, 23: 1001-1007.
doi: 10.11869/hnxb.2009.06.1001
Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J. Current status and outlook perspectives of induced mutations for plant improvement. J Nucl Agric Sci, 2009, 23: 1001-1007 (in Chinese with English abstract).
[8] Orłowska R, Pachota K A, Machczyńska J, Niedziela A, Makowska K, Zimny J, Bednarek P T. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol, 2020, 43: 8-15.
[9] Germanà M A. Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult, 2011, 104: 283-300.
[10] 高润红, 郭桂梅, 何婷, 杜志钊, 任金宝, 刘成洪, 陆瑞菊. 大麦旗叶距对小孢子发育时期、愈伤组织诱导以及绿苗再生的影响. 南京农业大学学报, 2021, 44: 36-41.
Gao R H, Guo G M, He T, Du Z Z, Ren J B, Liu C H, Lu R J. Effects of the flag leaf space on microspore developmental stage, callus induction and green plant regeneration in barley. J Nanjing Agric Univ, 2021, 44: 36-41 (in Chinese with English abstract).
[11] Mayakaduwa D M R G, Silva T D. A cytological indicator allows rapid assessment of microspore maturity, leading to improved in vitro anther response in indica rice (Oryza sativa L.). Vitro Cell Dev Biol Plant, 2017, 53: 591-597.
[12] Warchoł M, Czyczyło-Mysza I, Marcińska I, Dziurka K, Noga A, Kapłoniak K, Pilipowicz M, Skrzypek E. Factors inducing regeneration response in oat (Avena sativa L.) anther culture. Vitro Cell Dev Biol Plant, 2019, 55: 595-604.
[13] Lantos C, Weyen J, Orsini J M, Gnad H, Schlieter B, Lein V, Kontowski S, Jacobi A, MihÁly R, Broughton S, et al. Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breed, 2013, 132: 149-154.
[14] Santra M, Ankrah N, Santra D K, Kidwell K K. An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Sci, 2012, 52: 2314-2320.
[15] 赵林姝, 刘录祥, 古佳玉, 谢永盾, 郭会君, 赵世荣, 李军辉, 熊宏春. 冬小麦高花药培养力基因型的筛选. 麦类作物学报, 2017, 37: 1294-1300.
Zhao L S, Liu L X, Gu J Y, Xie Y D, Guo H J, Zhao S R, Li J H, Xiong H C. Screening of winter wheat germplasms with high anther culture ability. J Triticeae Crops, 2017, 37: 1294-1300 (in Chinese with English abstract).
[16] 吕学莲, 白海波, 蔡正云, 董建力, 高晓原, 陈雪, 李树华. 小麦花药培养的基因型效应及优良基因型筛选. 中国农学通报, 2011, 27(33): 13-17.
Lyu X L, Bai H B, Cai Z Y, Dong J L, Gao X Y, Chen X, Li S H. Effect of genotype on wheat anther culture and selection of choiceness genotype. Chin Agric Sci Bull, 2011, 27(33): 13-17 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-1802
[17] 姜秀芳, 郑继周, 邓春霞, 韩玉林, 王凤真. 小麦花培材料的筛选和利用. 中国农学通报, 2005, 21(2): 62-64.
Jiang X F, Zheng J Z, Deng C X, Han Y L, Wang F Z. Screening and utilization of wheat flower culture materials. Chin Agric Sci Bull, 2005, 21(2): 62-64 (in Chinese with English abstract).
[18] 王炜, 陈琛, 叶春雷, 贺小宝, 杜旺喜, 王云贵, 杨芳萍, 杨文雄, 杨随庄, 王方, 等. 甘肃主栽小麦品种及骨干亲本花药培养特性评价及分析. 核农学报, 2016, 30: 1059-1066.
doi: 10.11869/j.issn.100-8551.2016.06.1059
Wang W, Chen C, Ye C L, He X B, Du W X, Wang Y G, Yang F P, Yang W X, Yang S Z, Wang F, et al. Evaluation and analysis of anther culture characteristics in Gansu wheat cultivars and backbone parents. J Nucl Agric Sci, 2016, 30: 1059-1066 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2016.06.1059
[19] 朱建楚, 贺学礼, 王辉. 西农1376小麦早熟高产的生物学特性分析. 麦类作物学报, 1996, 27: 31-33.
Zhu J C, He X L, Wang H. Biological characteristics of early maturity and high yield of Xinong 1376 wheat. J Triticeae Crops, 1996, 27: 31-33 (in Chinese).
[20] 朱有朋, 郭春燕, 孙文鑫, 马彩艳, 袁水泉, 詹克慧. 小麦骨干亲本豫麦2号的育种价值分析. 中国农学通报, 2009, 25(19): 50-54.
Zhu Y P, Guo C Y, Sun W X, Ma C Y, Yuan S Q, Zhan K H. Breeding value of the wheat corner stone parent Yumai 2. Chin Agric Sci Bull, 2009, 25(19): 50-54 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2009-0997
[21] 张勇, 阎俊, 肖永贵, 郝元峰, 张艳, 徐开杰, 曹双河, 田宇兵, 李思敏, 闫俊良, 等. 中麦895高产稳产优质特性遗传解析. 中国农业科学, 2021, 54: 3158-3167.
doi: 10.3864/j.issn.0578-1752.2021.15.002
Zhang Y, Yan J, Xiao Y G, Hao Y F, Zhang Y, Xu K J, Cao S H, Tian Y B, Li S M, Yan J L, et al. Characterization of wheat cultivar Zhongmai 895 with high yield potential, broad adaptability, and good quality. Sci Agric Sin, 2021, 54: 3158-3167 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.15.002
[22] 李慧, 赵林姝, 古佳玉, 郭会君, 谢永盾, 熊宏春, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦花药培养体系优化及高再生力基因型的筛选. 植物遗传资源学报, 2022, 23: 738-745
doi: 10.13430/j.cnki.jpgr.20211021003
Li H, Zhao L S, Gu J Y, Guo H J, Xie Y D, Xiong H C, Zhao S R, Ding Y P, Xu Y H, Liu L X. Optimizing of anther culture system and screening wheat genotypes with higher regeneration ability. J Plant Genetic Resour, 2022, 23: 738-745 (in Chinese with English abstract).
[23] 蔡正云, 吕学莲, 白海波, 董建力, 段敦亮, 李树华, 魏亦勤. 基因型对小麦花药培养的影响研究. 广东农业科学, 2014, 41(24): 1-5.
Cai Z Y, Lyu X L, Bai H B, Dong J L, Duan D L, Li S H, Wei Y Q. Effects of genotypes on wheat anther culture. Guangdong Agric Sci, 2014, 41(24): 1-5 (in Chinese with English abstract).
[24] 王宁, 许铭, 王建锋, 王浩庭, 韩德俊, 康振生, 韩青梅. 转LTP基因T0代小麦的获得及抗条锈病鉴定. 中国农业大学学报, 2015, 20(3): 9-14.
Wang N, Xu M, Wang J F, Wang H T, Han D J, Kang Z S, Han Q M. Wheat T0 generation of transgenic LTP genes and identification of resistance to stripe rust. J China Agric Univ, 2015, 20(3): 9-14 (in Chinese with English abstract).
[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[4] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[5] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[6] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[7] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[8] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[9] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[10] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[11] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[12] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[13] LYU Guo-Feng, FAN Jin-Ping, WU Su-Lan, ZHANG Xiao, ZHAO Ren-Hui, LI Man, WANG Ling, GAO De-Rong, BIE Tong-De, LIU Jian. Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37 [J]. Acta Agronomica Sinica, 2025, 51(6): 1538-1547.
[14] WU Mei-Juan, ZHANG Yin-Hui, LI Yuan-Hao, LIU Hai-Xia, HUANG Yi-Lin, LI Tian, LIU Hong-Xia, ZHANG Xue-Yong, HAO Chen-Yang, GUO Jie, HOU Jian. Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1514-1525.
[15] YANG Si-Jie, DU Qi-Di, CHAI Shou-Xi, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, GUO Hui-Jun, LIU Lu-Xiang. Genetic mapping of mutant genes on flag leaf length and width in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1548-1557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!