Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2020-2032.doi: 10.3724/SP.J.1006.2025.51020

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B

CAI Jin-Shan1(), LI Chao-Nan2, WANG Jing-Yi2, LI Ning1, LIU Yu-Ping2, JING Rui-Lian2, LI Long2,*(), SUN Dai-Zhen1,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-02-24 Accepted:2025-06-01 Online:2025-08-12 Published:2025-06-10
  • Contact: *E-mail: sdz64@126.com;E-mail: lilong01@caas.cn
  • Supported by:
    National Key R&D Program of China(2022YFD1200201);China Agriculture Research System of MOF and MARA(CARS-03-5)

Abstract:

The root system is the primary organ responsible for water and nutrient uptake in wheat, and its morphological characteristics are closely associated with yield and tolerance to abiotic stress. Therefore, identifying genetic loci and favorable alleles that control root morphology is of great importance for wheat improvement. In this study, 277 wheat accessions were evaluated using a gel-chamber-based observation method to characterize eight root morphological traits at the seedling stage, including total root length, root surface area, and root angle. Based on genotyping with the Wheat 660K SNP Array, a genome-wide association study (GWAS) was performed using three models (GLM, MLM, and FarmCPU), leading to the identification of 52 associated loci. Among them, six pleiotropic loci (Loci17, Loci20, Loci22, Loci38, Loci46, and Loci47) were located on chromosomes 3A, 3B, 3D, 5A, 6A, and 6B, respectively. Within Loci20, the candidate gene TaSRL-3B, associated with root morphology, was cloned. This gene has a full-length sequence of 1089 bp, lacks introns, and contains a conserved NAC domain between amino acids 78 and 235. A 20-bp insertion/deletion (InDel717) in the coding region of TaSRL-3B caused a frameshift mutation and showed strong linkage (R2 = 0.84) with the candidate SNP (AX-108758584) in Loci20. Accessions carrying the TaSRL-3BIn allele exhibited significantly greater maximum root length, total root length, and root surface area compared to those with the TaSRL-3BIn. A backcross introgression line population (BC3F5) was developed using Lumai 14 (LM14, carrying TaSRL-3BDel as the recurrent parent and Shaanhe 6 (SH6, carrying TaSRL-3BIn as the donor. A molecular marker based on InDel717 was used to identify five near-isogenic lines (NILs) carrying TaSRL-3BIn from this population. Compared to LM14, these lines showed significant improvements in maximum root length, total root length, root surface area, and root volume, further confirming the role of TaSRL-3B in shaping seedling root morphology. Notably, the frequency of the long-root allele TaSRL-3BIn has declined in modern Chinese cultivars compared to landraces. This study provides valuable insights into the genetic regulation of wheat root traits and supports the genetic improvement of root systems for enhanced wheat performance.

Key words: wheat, seedling, root morphology, genome-wide association analysis, candidate gene

Table 1

Statistic analysis of root traits"

性状
Trait
变异范围
Range
均值
Mean
标准差
SD
变异系数
CV (%)
广义遗传力
Broad-sense heritability (%)
最大根长 MRL (cm) 7.59-20.30 16.02 1.56 9.74 83.41
总根长 TRL (cm) 32.88-71.89 51.37 7.85 15.28 79.16
根直径 RD (mm) 0.40-0.57 0.49 0.03 6.12 78.10
根数目 RN 3.11-5.67 4.49 0.55 12.25 74.13
根表面积 RS (cm2) 4.70-11.57 7.85 1.23 15.67 76.32
根体积 RV (cm3) 0.06-0.17 0.09 0.02 22.22 74.05
根鲜重 RFW (g) 0.03-0.11 0.07 0.01 14.29 69.13
根角度 RA (°) 25.90-155.82 108.26 28.29 26.13 77.79

Fig. 1

Correlation matrix of wheat seedling root traits The diagonal displays histograms of individual root traits. The bottom left part of the matrix shows the scatter plots between root traits, red lines indicate linear regressions, the top right part shows the correlation coefficient. * and ** indicate significant correlation at the 0.05 and 0.01 probability levels, respectively. Darker colors represent stronger correlations. Abbreviations are the same as those given in Table 1."

Fig. 2

GWAS of root traits in wheat seedling A-C: manhattan plots of GWAS results for root traits based on the GLM, MLM, and FarmCPU model, respectively. From the innermost to the outermost rings, the GWAS results are shown for maximum root length, total root length, root diameter, root number, root surface area, root volume, root fresh weight and root angle. D: venn diagram of GWAS results for root traits based on different models. E: distribution of associated loci on chromosomes, red indicates pleiotropic loci. GLM: general linear model; MLM: mixed linear model; FarmCPU: fixed and random model circulating probability unification."

Table S1

Significant associated loci for wheat root traits"

关联位点 性状 候选SNP 染色体 位置 PGLM PMLM PFarmCPU
Associated loci Trait Candidate SNP Chromosome Position (bp) -log10 (PGLM) -log10(PMLM) -log10(PFarmCPU)
Loci1 RA AX-94530450 1A 1,174,785 6.36 4.59 6.36
Loci2 TRL AX-94938835 1A 45,797,074 4.80 3.86 6.81
Loci3 RV AX-108830982 1A 49,331,465 4.96 4.20 4.96
Loci4 RD AX-95211457 1A 57,764,436 4.80 2.51 4.80
Loci5 RA AX-110550989 1A 363,636,440 5.10 2.47 5.10
Loci6 RD AX-95151393 1B 94,831,699 4.95 2.73 4.95
Loci7 RA AX-109887764 1B 684,214,070 5.25 4.32 5.25
Loci8 RD AX-94783903 1D 58,760,372 5.67 2.92 5.67
Loci9 RD AX-94763625 1D 62,415,780 4.79 2.54 4.79
Loci10 RA AX-108748925 1D 293,524,586 4.74 2.14 4.74
Loci11 RN AX-108757188 2A 14,946,475 6.45 5.35 6.45
Loci12 RN AX-110058193 2B 27,539,477 4.88 2.66 4.88
Loci13 RN AX-95124238 2D 598,329,680 5.08 4.15 5.08
Loci14 RD AX-111129296 3A 15,334,246 5.06 4.57 5.06
Loci15 RV AX-94413327 3A 33,200,963 5.60 4.43 5.60
Loci16 RN AX-94531407 3A 355,255,702 5.11 3.97 5.11
Loci17 TRL AX-95170863 3A 642,157,356 8.74 4.90 0.07
Loci17 RS AX-95170863 3A 642,157,356 9.02 5.31 0.78
Loci18 RN AX-110919402 3B 272,543,663 5.80 3.26 5.80
Loci19 TRL AX-109991407 3B 627,748,254 7.07 4.73 8.57
Loci20 MRL AX-108758584 3B 658,464,182 8.00 5.16 13.56
Loci20 TRL AX-108758584 3B 658,464,182 10.28 4.78 0.03
Loci20 RS AX-108758584 3B 658,464,182 9.51 5.01 13.92
Loci21 RD AX-108861242 3D 41,269,285 4.80 5.37 4.80
Loci22 MRL AX-95079631 3D 496,787,830 7.37 5.01 0.14
Loci22 TRL AX-95079631 3D 496,787,830 10.33 5.94 9.82
Loci22 RS AX-95079631 3D 496,787,830 8.90 5.65 0.09
Loci23 TRL AX-94519825 3D 504,057,903 8.55 4.98 0.13
Loci24 RN AX-111498171 3D 587,502,221 5.07 3.73 5.07
Loci25 RN AX-109907879 3D 611,193,094 4.77 3.66 4.77
Loci26 RFW AX-110691523 4A 2,981,188 4.83 3.52 4.83
Loci27 RA AX-110721031 4A 601,774,555 4.91 2.99 4.91
Loci28 RA AX-109400915 4A 614,230,276 6.70 4.77 6.70
Loci29 RD AX-110473901 4A 719,247,368 4.83 2.68 4.83
Loci30 RA AX-95229763 4B 14,112,442 4.83 3.02 4.83
Loci31 RA AX-109453026 4B 217,485,661 5.36 2.92 5.36
Loci32 RA AX-111556840 4B 226,194,248 4.88 2.47 4.88
Loci33 RA AX-111593000 4B 237,489,681 5.29 2.66 5.29
Loci34 RA AX-94629126 4B 281,732,587 5.06 3.69 5.06
Loci35 RA AX-109330449 4B 306,933,435 4.80 2.36 4.80
Loci36 RA AX-110103911 4B 361,732,573 4.96 2.57 4.96
Loci37 RV AX-109216467 4D 206,954,832 5.12 4.61 5.12
Loci38 TRL AX-109929811 5A 39,928,718 6.15 4.87 7.16
Loci38 RFW AX-109929811 5A 39,928,718 5.17 4.69 5.17
Loci38 RS AX-109929811 5A 39,928,718 5.77 4.66 11.90
Loci39 RN AX-94790761 5B 15,321,516 4.74 3.88 4.74
Loci40 MRL AX-109840604 5B 604,060,280 4.77 3.46 6.71
Loci41 RA AX-110957626 5B 691,956,913 7.53 6.64 7.53
Loci42 RD AX-110048366 5D 31,117,168 5.04 2.98 5.04
Loci43 RA AX-94486801 5D 553,010,006 5.16 3.70 5.16
Loci44 RD AX-108863773 6A 13,601,639 4.95 3.17 4.95
Loci45 RFW AX-109936313 6A 50,437,525 5.53 4.24 5.53
Loci46 TRL AX-110579044 6A 58,050,390 6.32 3.48 6.99
Loci46 RFW AX-110579044 6A 58,050,390 6.58 4.57 6.58
Loci46 RS AX-110579044 6A 58,050,390 6.93 3.96 9.22
Loci47 MRL AX-95018127 6B 19,999,314 7.67 5.22 0.34
Loci47 TRL AX-95018127 6B 19,999,314 8.97 5.08 0.29
Loci47 RS AX-95018127 6B 19,999,314 7.72 4.83 0.01
Loci48 RV AX-108958707 6B 93,414,710 5.08 4.03 5.08
Loci49 RFW AX-109954348 6B 94,122,920 6.60 4.56 6.60
Loci50 TRL AX-108776159 6B 713,461,853 5.00 2.75 5.56
Loci51 RA AX-109078183 6D 7,469,443 5.18 3.40 5.18
Loci52 RN AX-94519359 7A 538,102,732 4.93 3.59 4.93

Table 2

Pleiotropic associated loci for wheat root traits"

关联位点 性状 候选SNP 染色体 位置 PGLM PMLM PFarmCPU
Associated loci Trait Candidate SNP Chromosome Position (bp) -log10(PGLM) -log10(PMLM) -log10(PFarmCPU)
Loci17 TRL AX-95170863 3A 642,157,356 8.74 4.90 0.07
Loci17 RS AX-95170863 3A 642,157,356 9.02 5.31 0.78
Loci20 MRL AX-108758584 3B 658,464,182 8.00 5.16 13.56
Loci20 TRL AX-108758584 3B 658,464,182 10.28 4.78 0.03
Loci20 RS AX-108758584 3B 658,464,182 9.51 5.01 13.92
Loci22 MRL AX-95079631 3D 496,787,830 7.37 5.01 0.14
Loci22 TRL AX-95079631 3D 496,787,830 10.33 5.94 9.82
Loci22 RS AX-95079631 3D 496,787,830 8.90 5.65 0.09
Loci38 TRL AX-109929811 5A 39,928,718 6.15 4.87 7.16
Loci38 RFW AX-109929811 5A 39,928,718 5.17 4.69 5.17
Loci38 RS AX-109929811 5A 39,928,718 5.77 4.66 11.90
Loci46 TRL AX-110579044 6A 58,050,390 6.32 3.48 6.99
Loci46 RFW AX-110579044 6A 58,050,390 6.58 4.57 6.58
Loci46 RS AX-110579044 6A 58,050,390 6.93 3.96 9.22
Loci47 MRL AX-95018127 6B 19,999,314 7.67 5.22 0.34
Loci47 TRL AX-95018127 6B 19,999,314 8.97 5.08 0.29
Loci47 RS AX-95018127 6B 19,999,314 7.72 4.83 0.01

Table 3

Annotation of genes in Loci20"

基因号 Gene ID 物理位置 Physical position (bp) 功能注释 Gene annotation
TraesCS3B02G421100 Chr.3B: 658,058,978-658,060,408 多巴双加氧酶 4,5-DOPA dioxygenase extradiol
TraesCS3B02G421200 Chr.3B: 658,062,268-658,065,391 外二醇双加氧酶 Extradiol dioxygenase
TraesCS3B02G421300 Chr.3B: 658,462,627-658,463,973 含NAC结构域蛋白 NAC domain containing protein
TraesCS3B02G421400 Chr.3B: 658,486,988-658,488,416 邻氨基苯甲酸 O-甲基转移酶1 Anthranilate O-methyltransferase 1
TraesCS3B02G421500 Chr.3B: 658,489,846-658,491,612 邻氨基苯甲酸 O-甲基转移酶1 Anthranilate O-methyltransferase 1
TraesCS3B02G421600 Chr.3B: 658,494,276-658,498,604 转录起始因子TFIID 亚基9 TFIID subunit 9

Fig. 3

Association of TaSRL-3B allelic variation with cSNP and root phenotype A: analysis of allelic variation of TaSRL-3B gene and its association with root traits (MLM model). Red, yellow, and blue dots represent the results of association analysis between TaSRL-3B gene alleles and maximum root length (MRL), root surface area (RS) and total root length (TRL), respectively. B: linkage disequilibrium analysis of TaSRL-3B gene alleles and cSNP. C-E: differences of root traits between wheat accessions with In717 and Del717. ** indicates significant correlation at the 0.01 probability level. Abbreviations are the same as those given in Table 1. cSNP: coding region single nucleotide polymorphism; In: insertion; Del: deletion."

Fig. 4

Creation and root phenotypic analysis of near-isogenic lines of LM14 A: genotyping of LM14 and SH6 identified by molecular marker STSTaSRL-3B. B: the creation process of near-isogenic lines of LM14. C: photograph of the seedling roots of LM14 and its near-isogenic lines, scale bar is 2 cm. D-G: comparison of root traits of LM14 and its near-isogenic lines at seedling stage. Letters above the bars indicate significant differences among groups; different lowercase letters denote significance at the α = 0.05 level. LM14: Lumai 14; SH6: Shaanhe 6."

Fig. 5

Frequency distribution of TaSRL-3B alleles in 10 wheat production zones across China A: distribution of TaSRL-3B alleles in landraces. B: distribution of TaSRL-3B alleles in modern varieties. I: northern winter wheat zone; II: Huang-huai river valleys facultative wheat zone; III: middle and low Yangtze valleys autumn-sown spring wheat zone; IV: southwestern autumn-sown spring wheat zone; V: southern autumn-sown spring wheat zone; VI: northeastern spring wheat zone; VII: northern spring wheat zone; VIII: northwestern spring wheat zone; IX: Qinghai-tibetan plateau spring-winter wheat zone; X: xinjiang winter-spring wheat zone."

[1] FAOSTAT. Statistics Database.Rome Available at: http://www.fao.org/statistics/databases/en/ [2025-04-04].
[2] Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. Genetic strategies for improving crop yields. Nature, 2019, 575: 109-118.
[3] Li L, Wang J Y, Li C N, Mao X G, Zhang X Q, Sun J W, Zhang K, Liu Y P, Reynolds M P, Yang Z G, et al. Insights into progress of wheat breeding in arid and infertile areas of China in the last 14 years. Field Crops Res, 2024, 306: 109220.
[4] Nirmalaruban R, Yadav R, Sugumar S, Meda A, Babu P, Kumar M, Gaikwad K B, Bainsla N K, Singh S K, Suvitha R, et al. Root traits: a key for breeding climate-smart wheat (Triticum aestivum). Plant Breed, 2025, 144: 310-334.
[5] Ober E S, Alahmad S, Cockram J, Forestan C, Hickey L T, Kant J, Maccaferri M, Marr E, Milner M, Pinto F, et al. Wheat root systems as a breeding target for climate resilience. Theor Appl Genet, 2021, 134: 1645-1662.
doi: 10.1007/s00122-021-03819-w pmid: 33900415
[6] Tiwari V K, Saripalli G, Sharma P K, Poland J. Wheat genomics: genomes, pangenomes, and beyond. Trends Genet, 2024, 40: 982-992.
[7] Sahito J H, Zhang H, Gishkori Z G N, Ma C H, Wang Z H, Ding D, Zhang X H, Tang J H. Advancements and prospects of genome-wide association studies (GWAS) in maize. Int J Mol Sci, 2024, 25: 1918.
[8] Han S C, Wang Y L, Li Y X, Zhu R, Gu Y S, Li J, Guo H F, Ye W, Nabi H G, Yang T, et al. The OsNAC41-RoLe1-OsAGAP module promotes root development and drought resistance in upland rice. Mol Plant, 2024, 17: 1573-1593.
doi: 10.1016/j.molp.2024.09.002 pmid: 39228126
[9] Li C H, Guo J, Wang D M, Chen X J, Guan H H, Li Y X, Zhang D F, Liu X Y, He G H, Wang T Y, et al. Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environ, 2023, 46: 1860-1872.
[10] International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
[11] Yao Y Y, Guo W L, Gou J Y, Hu Z R, Liu J, Ma J, Zong Y, Xin M M, Chen W, Li Q, et al. Wheat2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025, 18: 272-297.
[12] Jiao C Z, Xie X M, Hao C Y, Chen L Y, Xie Y X, Garg V, Zhao L, Wang Z H, Zhang Y Q, Li T, et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 2025, 637: 384-393.
[13] Chen D D, Richardson T, Chai S C, Lynne McIntyre C, Rae A L, Xue G P. Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat. Plant Cell Physiol, 2016, 57: 2076-2090.
[14] Wang D Z, Zhang X X, Cao Y, Batool A, Xu Y X, Qiao Y Z, Li Y P, Wang H, Lin X L, Bie X M, et al. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. J Integr Plant Biol, 2024, 66: 1295-1312.
doi: 10.1111/jipb.13670
[15] Li Y Y, Zhang Y F, Li C N, Chen X, Yang L L, Zhang J, Wang J Y, Li L, Reynolds M P, Jing R L, et al. Transcription factor TaWRKY51 is a positive regulator in root architecture and grain yield contributing traits. Front Plant Sci, 2021, 12: 734614.
[16] Yang W, Feng M, Yu K H, Cao J, Cui G X, Zhang Y M, Peng H R, Yao Y Y, Hu Z R, Ni Z F, et al. The TaCLE24b peptide signaling cascade modulates lateral root development and drought tolerance in wheat. Nat Commun, 2025, 16: 1952.
[17] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540-2553.
[18] 赵阳, 李龙, 杨进文, 景蕊莲, 孙黛珍, 王景一. 小麦E3泛素连接酶基因TaSINA-3A与多种环境下的株高和千粒重相关. 作物学报, 2024, 50: 2654-2664.
doi: 10.3724/SP.J.1006.2024.41008
Zhao Y, Li L, Yang J W, Jing R L, Sun D Z, Wang J Y. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat. Acta Agron Sin, 2024, 50: 2654-2664 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.41008
[19] Yin L L, Zhang H H, Tang Z S, Xu J Y, Yin D, Zhang Z W, Yuan X H, Zhu M J, Zhao S H, Li X Y, et al. rMVP: a memory- efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinform, 2021, 19: 619-628.
[20] Li M X, Yeung J M Y, Cherny S S, Sham P C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet, 2012, 131: 747-756.
[21] Chen Y M, Guo Y W, Guan P F, Wang Y F, Wang X B, Wang Z H, Qin Z, Ma S W, Xin M M, Hu Z R, et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. Mol Plant, 2023, 16: 393-414.
[22] Li L, Peng Z, Mao X G, Wang J Y, Li C N, Chang X P, Jing R L. Genetic insights into natural variation underlying salt tolerance in wheat. J Exp Bot, 2021, 72: 1135-1150.
doi: 10.1093/jxb/eraa500 pmid: 33130904
[23] 李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望. 中国农业科学, 2022, 55: 425-437.
doi: 10.3864/j.issn.0578-1752.2022.03.001
Li L, Li C N, Mao X G, Wang J Y, Jing R L. Advances and perspectives of approaches to phenotyping crop root system. Sci Agric Sin, 2022, 55: 425-437 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.03.001
[24] Urfan M, Sharma S, Hakla H R, Rajput P, Andotra S, Lehana P K, Bhardwaj R, Khan M S, Das R, Kumar S, et al. Recent trends in root phenomics of plant systems with available methods-discrepancies and consonances. Physiol Mol Biol Plants, 2022, 28: 1311-1321.
[25] Xiong H Y, He H D, Chang Y, Miao B B, Liu Z W, Wang Q Q, Dong F M, Xiong L Z. Multiple roles of NAC transcription factors in plant development and stress responses. J Integr Plant Biol, 2025, 67: 510-538.
doi: 10.1111/jipb.13854
[26] Xie C T, Li C L, Wang F X, Zhang F, Liu J J, Wang J X, Zhang X S, Kong X P, Ding Z J. NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR-CYCD6;1 module in Arabidopsis. Mol Plant, 2023, 16: 709-725.
[27] Xu P P, Ma W, Hu J B, Cai W M. The nitrate-inducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in Arabidopsis thaliana. PLoS Genet, 2022, 18: e1010090.
[28] Mao C J, He J M, Liu L N, Deng Q M, Yao X F, Liu C M, Qiao Y L, Li P, Ming F. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol J, 2020, 18: 429-442.
doi: 10.1111/pbi.13209 pmid: 31389120
[29] Swain N, Sahoo R K, Jeughale K P, Sarkar S, Selvaraj S, Parameswaran C, Katara J, Bose L K, Samantaray S. Rice homolog of Arabidopsis Xylem NAC domain 1 (OsXND1), a NAC transcription factor regulates drought stress responsive root system architecture in indica rice. Mol Genet Genomics, 2024, 299: 94.
[30] Lyu S K, Guo H, Zhang M, Wang Q H, Zhang H, Ji W Q. Large-scale cloning and comparative analysis of TaNAC genes in response to stripe rust and powdery mildew in wheat (Triticum aestivum L.). Genes, 2020, 11: 1073.
[31] Gao J, Zhao Y, Zhao Z K, Liu W, Jiang C H, Li J J, Zhang Z Y, Zhang H L, Zhang Y G, Wang X N, et al. RRS1 shapes robust root system to enhance drought resistance in rice. New Phytol, 2023, 238: 1146-1162.
[32] Uga Y. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breed Sci, 2021, 71: 3-12.
[33] Voss-Fels K P, Qian L W, Parra-Londono S, Uptmoor R, Frisch M, Keeble-Gagnère G, Appels R, Snowdon R J. Linkage drag constrains the roots of modern wheat. Plant Cell Environ, 2017, 40: 717-725.
[34] Xiang Y H, Yu J J, Liao B, Shan J X, Ye W W, Dong N Q, Guo T, Kan Y, Zhang H, Yang Y B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Mol Plant, 2022, 15: 1908-1930.
[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[4] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[5] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[6] MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008.
[7] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[8] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[9] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[10] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[11] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[12] ZHAO Chao-Nan, WANG Jin-Feng, ZHANG Yu, ZHANG Li, LI Rui-Qi, WANG Peng-Fei, LI Ge-Zi, ZHANG Hong-Jun, YU Bo, KANG Guo-Zhang. Genome-wide association study for the identification and characterization of nitrogen efficiency-related genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1801-1813.
[13] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[14] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[15] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!