Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2318-2329.doi: 10.3724/SP.J.1006.2025.53011

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize

GAO Yuan**(), WANG Yu-Qi**(), JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin*()   

  1. Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2025-02-19 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-10
  • Contact: *E-mail: linlinhe65@sina.com E-mail:644909333@qq.com;3496668542@qq.com;linlinhe65@sina.com
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31701328);Postdoctoral Research Foundation of Heilongjiang Province(LBH-Q21160)

Abstract:

Low temperature is one of the major abiotic stresses limiting maize yield in Northeast China. Membrane-bound NAC transcription factors play important roles in plant stress responses. Investigating their function provides a theoretical basis for breeding maize with enhanced cold tolerance. In this study, the molecular characteristics of nine maize NTL genes were analyzed using bioinformatics approaches. Analysis of publicly available RNA-seq data revealed that six of these genes were significantly upregulated by low temperature stress in both roots and leaves. Among them, ZmNTL1 and ZmNTL5, which share 80.04% sequence homology, were selected for further study. A double knockout mutant (zmntl1zmntl5) was generated using gene-editing techniques. Under low temperature stress, the ion leakage rate in the leaves of zmntl1zmntl5 was significantly higher than in the wild-type B104. The fresh and dry weights of both aboveground and belowground tissues, as well as chlorophyll content, were significantly lower in zmntl1zmntl5 compared to B104. In contrast, zmntl1zmntl5 exhibited significantly higher levels of O2- and H2O2, while the activities of antioxidant enzymes GST, SOD, POD, and CAT were significantly reduced. Furthermore, the expression levels of ZmGST24, ZmNCED3, ZmDREB1.6, and ZmDREB2A were markedly decreased in zmntl1zmntl5 compared to B104 under cold stress. In summary, the absence of ZmNTL1 and ZmNTL5 compromises cold tolerance in maize, suggesting that both genes function as positive regulators in the cold stress response. This study provides a valuable theoretical foundation and genetic resources for the improvement of cold-tolerant maize varieties and the development of new cultivars.

Key words: maize, low temperature, RNA-seq, NTL, gene editing

Table 1

Primers used in this study"

引物名称
Primer name
序列
Sequence (5′-3′)
作用
Function
pCPB-Cas9-F GACGGCCAGTGCCAAGCTTGCTGTTTTTGTTAGCCCCATCG 载体构建 Vector construction
pCPB-Cas9-R CTAGCTCTAAAACAATCCTGGTGGCAGGTGCATAATTCGGTGCTTGC 载体构建 Vector construction
ZmNTL1-F CTTCTGCATTTCTAGGCATGATTG 测序 Sequencing
ZmNTL1-R CCGTCTATCTGCCTATGATTCTCAA 测序 Sequencing
ZmNTL5-F CTCGGGTGCTGTGTTTCTGTTTG 测序 Sequencing
ZmNTL5-R GAGGATACAGATTGACAGGCATCACTT 测序 Sequencing
ZmUbi-F TGGTTGTGGCTTCGTTGGTT 实时荧光定量PCR qRT-PCR
ZmUbi-R GCTGCAGAAGAGTTTTGGGTACA 实时荧光定量PCR qRT-PCR
ZmGST24-F CCGGAGTGCACCTGATAGC 实时荧光定量PCR qRT-PCR
ZmGST24-R TGACCCACGACTTGTACCTC 实时荧光定量PCR qRT-PCR
ZmNCED3-F CCGAGGAAAGCGGACGG 实时荧光定量PCR qRT-PCR
ZmNCED3-R CGTAGACCCCGTCGATGAAG 实时荧光定量PCR qRT-PCR
ZmDREB1.6-F TTGAGGTGGATGTGTTCGGC 实时荧光定量PCR qRT-PCR
ZmDREB1.6-R CCACAGCTCCATCTCACCAG 实时荧光定量PCR qRT-PCR
ZmDREB2A-F ATCACTCGGACATCGCATCC 实时荧光定量PCR qRT-PCR
ZmDREB2A-R AGATACCAGGGCTGTCCCAT 实时荧光定量PCR qRT-PCR

Table 2

Physicochemical properties of ZmNTLs genes"

基因名称
Gene name
基因ID
Gene ID
染色体位置
Chromosomal
location
蛋白质长度
Protein length (aa)
分子量
Molecular weight
(kD)
理论等电点
Theoretical isoelectric point
ZmNTL1 GRMZM2G064541 3 517 57.50 5.49
ZmNTL2 GRMZM2G125777 4 665 71.82 4.53
ZmNTL3 GRMZM2G113950 4 657 71.98 4.62
ZmNTL4 GRMZM2G004531 7 709 77.98 4.67
ZmNTL5 GRMZM2G167492 8 518 57.33 5.52
ZmNTL6 GRMZM2G163914 9 612 66.81 5.58
ZmNTL7 GRMZM2G003715 10 664 73.61 4.81
ZmNTL8 GRMZM2G158204 8 313 34.83 9.62
ZmNTL9 AC196475.3_FG005 4 633 70.66 4.90
基因名称
Gene name
不稳定指数
Instability index
脂肪酸指数
Fatty acid index
平均亲疏水性
Grand average of hydropathicity
低温叶log2FC
log2FC of leaves under low temperature
低温根log2FC
log2FC of roots under low temperature
ZmNTL1 49.37 70.60 -0.641 5.19 4.83
ZmNTL2 36.98 74.56 -0.365 -1.00 0.79
ZmNTL3 43.32 67.32 -0.530 2.19 1.47
ZmNTL4 46.98 68.27 -0.508 2.25 2.06
ZmNTL5 49.92 68.40 -0.607 3.32 2.56
ZmNTL6 49.88 79.07 -0.408 -1.21 0.62
ZmNTL7 47.62 67.12 -0.602 4.05 3.50
ZmNTL8 27.62 99.36 0.257 - -
ZmNTL9 56.17 65.94 -0.772 2.93 3.35

Fig. 1

Molecular characterization and expression patterns of ZmNTLs gene under low temperature stress A: gene structures of ZmNTLs. B: conservative motifs of ZmNTLs. C: prediction of ZmNTLs protein transmembrane domain. D: expression patterns of ZmNTLs under low temperature stress. E: phylogenetic relationship of NTLs. Green circles represent 7 NTLs from Arabidopsis thaliana, blue circles represent 5 NTLs from rice, yellow circles represent 9 NTLs from maize, red circle represents 1 NTL from wheat."

Fig. 2

Generation of zmntl1zmntl5 mutant materials A: protein sequence alignment of ZmNTL1 and ZmNTL5. B: schematic diagram of the pCPB-Cas9 recombinant vector. C: common target design of ZmNTL1 and ZmNTL5. D, E: alignment of mutant allele sequences in gene knockout materials."

Fig. 3

Effect of ZmNTL1 and ZmNTL5 knockouts on maize tolerance to low temperature A: phenotype of zmntl1zmntl5 mutant under low temperature stress. B-E: changes of aboveground fresh weight/dry weight and underground fresh weight/dry weight of zmntl1zmntl5 mutant under low temperature stress. F, G: changes of ion leakage rate and chlorophyll content of zmntl1zmntl5 mutant under low temperature stress. Scale bar: 10 cm. **, P < 0.01; ***, P < 0.001."

Fig. 4

Effects of ZmNTL1 and ZmNTL5 knockouts on the antioxidant defense system of maize under low temperature stress A-D: changes of GST, CAT, POD, and SOD activity of zmntl1zmntl5 mutant under low temperature stress. E, F: DAB and NBT staining of zmntl1zmntl5 mutants. G, H: changes of O2- and H2O2 contents in zmntl1zmntl5 mutant under low temperature stress. *, P < 0.05; **, P < 0.01."

Fig. 5

Effects of ZmNTL1 and ZmNTL5 knockouts on stress-related gene expression under low temperature stress A-D: relative expression levels of ZmGST24, ZmNCED3, ZmDREB1.6, and ZmDREB2A in the zmntl1zmntl5 mutant under low temperature stress. **, P < 0.01; ***, P < 0.001."

[1] Shikha K, Madhumal Thayil V, Shahi J P, Zaidi P H, Seetharam K, Nair S K, Singh R, Tosh G, Singamsetti A, Singh S, et al. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Sci Rep, 2023, 13: 6297.
doi: 10.1038/s41598-023-33250-8 pmid: 37072497
[2] Ding Y L, Yang S H. Surviving and thriving: how plants perceive and respond to temperature stress. Dev Cell, 2022, 57: 947-958.
doi: 10.1016/j.devcel.2022.03.010 pmid: 35417676
[3] Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S H. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol Plant, 2023, 16: 1496-1517.
[4] Ding Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures. Mol Plant, 2020, 13: 544-564.
doi: S1674-2052(20)30034-4 pmid: 32068158
[5] Li Z Y, Fu D Y, Wang X, Zeng R, Zhang X, Tian J G, Zhang S S, Yang X H, Tian F, Lai J S, et al. The transcription factor bZIP68 negatively regulates cold tolerance in maize. Plant Cell, 2022, 34: 2833-2851.
[6] Jiang H F, Shi Y T, Liu J Y, Li Z, Fu D Y, Wu S F, Li M Z, Yang Z J, Shi Y L, Lai J S, et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat Plants, 2022, 8: 1176-1190.
doi: 10.1038/s41477-022-01254-3 pmid: 36241735
[7] Seo P J. Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. J Integr Plant Biol, 2014, 56: 334-342.
doi: 10.1111/jipb.12139
[8] Yang Z T, Wang M J, Sun L, Lu S J, Bi D L, Sun L, Song Z T, Zhang S S, Zhou S F, Liu J X. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet, 2014, 10: e1004243.
[9] De Backer J, Van Breusegem F, De Clercq I. Proteolytic activation of plant membrane-bound transcription factors. Front Plant Sci, 2022, 13: 927746.
[10] Li S, Wang N, Ji D D, Xue Z Y, Yu Y C, Jiang Y P, Liu J L, Liu Z H, Xiang F N. Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean. Plant Physiol, 2016, 172: 1804-1820.
[11] Kim S G, Lee A K, Yoon H K, Park C M. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J, 2008, 55: 77-88.
[12] Sakuraba Y, Kim Y S, Han S H, Lee B D, Paek N C. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell, 2015, 27: 1771-1787.
[13] Sun H M, Xie Y Z, Yang W B, Lyu Q, Chen L P, Li J T, Meng Y, Li L Q, Li X J. Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 182: 182-193.
[14] Wu Z, Li T, Xiang J, Teng R D, Zhang D H, Teng N J. A lily membrane-associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2-HSFA3 module. J Exp Bot, 2023, 74: 945-963.
[15] Wang D X, Yu Y C, Liu Z H, Li S, Wang Z L, Xiang F N. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response. Plant Sci, 2016, 250: 30-39.
doi: S0168-9452(16)30098-X pmid: 27457981
[16] Qian Y X, Xi Y, Xia L X, Qiu Z L, Liu L, Ma H. Membrane-bound transcription factor ZmNAC074 positively regulates abiotic stress tolerance in transgenic Arabidopsis. Int J Mol Sci, 2023, 24: 16157.
[17] Xi Y, Ling Q Q, Zhou Y, Liu X, Qian Y X. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Front Plant Sci, 2022, 13: 986628.
[18] Gu Y N, He L, Zhao C J, Wang F, Yan B W, Gao Y Q, Li Z T, Yang K J, Xu J Y. Biochemical and transcriptional regulation of membrane lipid metabolism in maize leaves under low temperature. Front Plant Sci, 2017, 8: 2053.
doi: 10.3389/fpls.2017.02053 pmid: 29250095
[19] Zhao X C, Wei Y L, Zhang J J, Yang L, Liu X Y, Zhang H Y, Shao W J, He L, Li Z T, Zhang Y F, et al. Membrane lipids' metabolism and transcriptional regulation in maize roots under cold stress. Front Plant Sci, 2021, 12: 639132.
[20] Liu X H, Lyu Y S, Yang W P, Yang Z T, Lu S J, Liu J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J, 2020, 18: 1317-1329.
[21] Zhao Y S, Antoniou-Kourounioti R L, Calder G, Dean C, Howard M. Temperature-dependent growth contributes to long-term cold sensing. Nature, 2020, 583: 825-829.
[22] Seo P J, Kim M J, Park J Y, Kim S Y, Jeon J, Lee Y H, Kim J, Park C M. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J, 2010, 61: 661-671.
[23] Yang Z T, Fan S X, Wang J J, An Y, Guo Z Q, Li K, Liu J X. The plasma membrane-associated transcription factor NAC091 regulates unfolded protein response in Arabidopsis thaliana. Plant Sci, 2023, 334: 111777.
[24] Shi Y T, Ding Y L, Yang S H. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429
[25] Nguyen H T, Leipner J, Stamp P, Guerra-Peraza O. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem, 2009, 47: 116-122.
[26] Liu L, Tang C, Zhang Y, Sha X, Tian S, Luo Z, Wei G, Zhu L, Li Y, Fu J, et al. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. New Phytol, 2025, 245: 1985-2003.
doi: 10.1111/nph.20355 pmid: 39686522
[27] Song X P, Cao B Y, Xu Z P, Liang L, Xiao J C, Tang W, Xie M H, Wang D, Zhu L, Huang Z, et al. Molecular regulation by H2S of antioxidant and glucose metabolism in cold-sensitive Capsicum. BMC Plant Biol, 2024, 24: 931.
[1] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[2] JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306.
[3] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[4] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[5] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[6] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[7] HE Hong-Li, ZHANG Yu-Han, YANG Jing, CHENG Yun-Qing, ZHAO Yang, LI Xing-Nuo, SI Hong-Liang, ZHANG Xing-Zheng, YANG Xiang-Dong. Creation and physiological analysis of an e1-as gene mutant in soybean [J]. Acta Agronomica Sinica, 2025, 51(8): 2228-2239.
[8] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[9] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[10] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[11] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[12] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[13] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[14] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[15] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .