Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (09): 1640-1648.doi: 10.3724/SP.J.1006.2012.01640

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Analysis of Introgression Lines on Chromosomes 1H–7H in Barley

LAI Yong1,2,FENG Jing-Xia1,2,SI Er-Jing1,2,LI Bao-Chun3,MENG Ya-Xiong1,2,MA Xiao-Le2,YANG Ke1,2,SHANG Xu-Wu2,WANG Hua-Jun1,2,*   

  1. 1 Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement / Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3 College of Life Sciences and Technology of Gansu Agricultural University, Lanzhou 730070, China
  • Received:2012-01-15 Revised:2012-05-13 Online:2012-09-12 Published:2012-07-03
  • Contact: 王化俊, E-mail: whuajun@yahoo.com

Abstract: To provide a suitable population for quantitative trait locus (QTL) mapping and genetic research of favorable genes in barley (Hordeum valgare L.), we constructed a set of introgression lines (ILs, BC3F2) with the genetic background of recurrent parent Scarlett using 96 SSR markers that cover the whole genome of wild barley ISR42-8. This IL population contained 66 lines, and the target segments were determined with the 96 SSR markers distributed on chromosomes 1H to 7H of barley. The average length of target segments was 27.6 cM. The line IL-52 carried the longest introgressed segment (100.5 cM), and the line IL-50 carried the shortest introgressed segment (1.5 cM). There were 33 lines containing a single segment. The clustering analysis showed that the genetic backgrounds of these introgression lines were rather similar with each other. The genetic similarity coefficients ranged from 0.708 to 1.000, with the mean of 0.917. A QTL for tiller number was mapped in the interval of 87.5110.0 cM on chromosome 4H, the size of which was 22.5 cM, and the polymorphism marker was MGB396.

Key words: Barley, Introgression line, Molecular mark, QTL mapping

[1]Steven D Tanksley, Susan R. McCouch. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1064

[2]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191–203

[3]Xiao J, Li J, Yuan L, Thanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific cross. Theor Appl Genet, 1996, 92: 230–244

[4]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41–52

[5]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742

[6]Young N D, Tanksley S D. RFLP analysis of the size of chromosomal segments retained around Tm-2 locus of tomato during backcross breeding. Theor Appl Genet, 1989, 77: 353–359

[7]Yan J B, Tang J H, Meng Y J, Ma X Q, Teng W T, Subhash C, Li L, Li J S. Improving QTL mapping resolution based on genotypic sampling-a case using a RIL population. Acta Genet Sin, 2006, 33: 617–624

[8]Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96: 997–1003

[9]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112: 570–580

[10]Pestsova E G, Borner A, Roder M S. Development of a set of Triticum aestivum–Aegilops tauschii introgression lines. Hereditas, 2001, 135: 139–143

[11]Wang J, Xiang F N, Xia G M. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line. Planta, 2005, 221: 277–286

[12]Liu S B, Zhou R H, Dong Y C, Li P, Jia J Z. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360-1373

[13]Chetelat R T, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet, 2000, 100: 232–241

[14]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162

[15]Bernacchi D, Beck-Bunn D, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D. Advanced backcross QTL analysis of tomato: II. Evaluation of near isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998, 97: 170–180

[16]Pillen K, Zacharias A, Léon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 107: 340–352

[17]Pillen K, Zacharias A, Léon J. Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet, 2004, 108: 1591–1601

[18]Matus I, Corey A, Filichkin T, Hayes P M, Vales M I, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome, 2003, 46: 1010–1023

[19]Korff M V, Wang H, Léon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet, 2004, 109: 1736–1745

[20]Schmalenbach I, Körber N, Pillen K. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet, 2008, 117: 1093–1106

[21]Andrew H P, Curt L B, Jonathan F W. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127

[22]Kicherer S, Backes G, Walther U, Jahoor A. Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor Appl Genet, 2000, l00: 881–888

[23]Marquez-Cedillo L A, Hayes P M, Kleinhofs A, Legge W G, Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2001, 103: 625–637

[24]Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet, 2001, 103: 161–170

[25]Korff M V, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231

[26]Korff M V, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet, 2005, 112: 1221–1231
[1] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[2] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[3] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[4] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[7] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[8] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[9] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[10] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[11] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[12] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[13] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[14] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[15] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!