Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (03): 397-404.doi: 10.3724/SP.J.1006.2014.00397

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Genetic Mapping of SNP Markers via Genome Complexity Reduction in Tobacco

XIAO Bing-Guang1,*,QIU Jie2,CAO Pei-Jian3,GUI Yi-Jie2,LU Xiu-Ping1,LI Yong-Ping1,FAN Long-Jiang2   

  1. 1 Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China; 2 Department of Agronomy, Zhejiang University, Hangzhou 310058, China;
    3 China Tobacco Gene Research Center, Zhengzhou 450001, China
  • Received:2013-07-11 Revised:2013-11-28 Online:2014-03-12 Published:2014-01-16
  • Contact: 肖炳光, E-mail: xiaobg@263.net E-mail:肖炳光, E-mail: xiaobg@263.net

Abstract:

We proposed an approach for development of the SNP markers via genome complexity reduction in this study. The restriction enzymes were employed to digest target genome and then collect and sequence the fragments flanking the restriction sites by next-generation sequencing platform. A bioinformatics pipeline was developed for the SNP calling. A flue-cured tobacco DH population was used as a case to test the approach. The tobacco representative fragments were collected via a genome complexity reduction method and sequenced by using Illumina GA sequencer. A total of 1015 SNPs were found based on 11.4 Gb Illumina data using the bioinformatics pipeline. Taken available SSR markers (as backbone markers) together, a genetic linkage map with 1 307 molecular markers was constructed. Large-scale inter-chromosomal (linkage group) DNA combinations or exchanges and several homologous pairs among the tobacco 24 chromosomes were detected based on the genetic map and the available genomic sequences of two tobacco (Nicotiana tabacum L.) wild progenitors.

Key words: Flue-cured tobacco, SNP marker, Genome complexity reduction, Restriction enzyme, Genetic map

[1]Lim K Y, Matyasek R, Kovarik A, Leitch A R. Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc, 2004, 82: 599–606



[2]Clarkson J J, Lim K Y, Kovarik A, Chase M W, Knapp S, Leitch A R. Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol, 2005, 168: 241–252



[3]Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 1991, 9: 208–218



[4]Kenton A, Parokonny A S, Gleba Y Y, Bennett M D. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet, 1993, 240: 159–169



[5]Leng X D, Xiao B G, Wang S, Gui Y J, Wang Y, Lu X P, Xie J H, Li Y P, Fan L J. Identification of NBS-type resistance gene homologs in tobacco genome. Plant Mol Biol Rep, 2010, 28: 152–161



[6]Adams R P, Demeke T. Systematic relationships in Juniperus based on random amplified polymorphic DNA (RAPDs). Taxon, 1993, 42: 553–571



[7]Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407–4414



[8]Gupta M, Chyi Y S, Romero-Severson J, Owen J L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet, 1994, 89: 998–1006



[9]Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics, 1994, 20: 176–183



[10]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461



[11]Chang R Y, O’Donoughue L S, Bureau T E. Inter-MITE polymorphism (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet, 2001, 102: 773–781



[12]Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915–9920



[13]Coussirat J C. Genetic diversity and varietal identification in Nicotiana tabacum with RAPD markers. Annual du Tabac Section 2, 1994



[14]Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root rot of tobacco. Theor Appl Genet, 1995, 91: 1184–1189



[15]Lin T Y, Kao Y Y, Lin S, Lin R F, Chen C M, Huang C H, Wang C K, Lin Y Z, Chen C C. A genetic linkage map of Nicotiana plumbaginifolia / Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet, 2001, 103: 905–911



[16]Ren N, Timko M P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559–571



[17]Johnson E S, Wolff M F, Wernsman E A, Rufty R C. Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis, 2002, 86: 1303–1309



[18]Lewis R S, Milla S R, Levin J S. Molecular and genetic characterization of Nicotiana tabacum L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Sci, 2005, 45: 2355–2362



[19]Julio E, Verrier J L, de Borne F D. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006, 112: 335–346



[20]祁建民, 王涛, 陈顺辉, 周东新, 方平平, 陶爱芬, 梁景霞, 吴为人. 部分烟草种质遗传多样性与亲缘关系的ISSR标记分析. 作物学报, 2006, 32: 373–378



Qi J M, Wang T, Chen S H, Zhou D X, Fang P P, Tao A F, Liang J X, Wu W R. Genetic diversity and genetic relatives of tobacco germplasm based on inter-simple sequence repeat (ISSR). Acta Agron Sin, 2006, 32: 373–378 (in Chinese with English abstract)



[21]马红勃, 祁建民, 李延坤, 梁景霞, 王涛, 兰涛, 陈顺辉, 陶爱芬, 林荔辉, 吴建梅. 烟草SRAP和ISSR分子遗传连锁图谱构建. 作物学报, 2008, 34: 1958–1963



Ma H B, Qi J M, Li Y K, Liang J X, Wang T, Lan T, Chen S H, Tao A F, Lin L H, Wu J M. Construction of A molecular genetic linkage map of tobacco based on SRAP and ISSR markers. Acta Agron Sin, 2008, 34: 1958–1963 (in Chinese with English abstract)



[22]Lu X P, Gui Y J, Xiao B G, Li Y P, TONG Z J, Liu Y, Bai X F, Wu W R, Xia L, Hunttner E, Kilian A, Fan L J. Development of DArT markers for a linkage map of flue-cured tobacco. Chin Sci Bull, 2013, 58: 641–648



[23]高玉龙, 桂毅杰, 肖炳光, 薄世平, 严广号, 樊龙江. 烟草MITE位点间多态性(IMP)标记开发及其遗传作图应用. 浙江大学学报(农业与生命科学版), 2012, 38: 655–661



Gao Y L, Gui Y J, Xiao B G, Bo S P, Yan G H, Fan L J. Development of tobacco inter-MITE polymorphism (IMP) markers and its application in genetic mapping. J Zhejiang Univ (Agric & Life Sci), 2012, 38: 655–661 (in Chinese with English abstract)



[24]Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P. A microsatellite marker based linkage map of tobacco. Theor Appl Genet, 2007, 114: 341–349



[25]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230



[26]Semagn K, Bjornstad A, Ndjiondjop M N. An overview of molecular marker methods for plants. Afr J Biotechnol, 2006, 5: 2540–2568



[27]Helyar S J, Hemmer-Hansen J, Bekkevold D, Taylor M I, Ogden R, Limborg M T, Cariani A, Maes G E, Diopere E, Carvalho G R, Nielsen E E. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour, 2011, 11(suppl-1): 123–136



[28]Altshuler D, Pollara V J, Cowles C R, Van Etten W J, Baldwin J, Linton L, Lander E S. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 2000, 407: 513–516



[29]Du Y, Jiang H, Chen Y, Li C, Zhao M, Wu J, Qiu Y, Li Q, Zhang X. Comprehensive evaluation of SNP identification with the Restriction Enzyme-based Reduced Representation Library (RRL) method. BMC Genomics, 2012, 13: 77



[30]van Orsouw N J, Hogers R C, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk M J. Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE, 2007, 2: e1172



[31]Baird N A, Etter P D, Atwood T S, Currey M C, Shiver A L, Lewis Z A, Selker E U, Cresko W A, Johnson E A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 2008, 3: e3376



[32]Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6: e19379



[33]Davey J W, Hohenlohe P A, Etter P, Boone J, Catchen J, Blaxter M L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet, 2011, 12: 499–510



[34]Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet, 2003, 106: 765–770



[35]肖炳光, 徐照丽, 陈学军, 申爱荣, 李永平, 朱军. 利用DH 群体构建烤烟分子标记遗传连锁图. 中国烟草学报, 2006, 12(4): 35–40



Xiao B G, Xu Z L, Chen X J, Shen A R, Li Y P, Zhu J. Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tab Sin, 2006, 12(4): 35–40 (in Chinese with English abstract)



[36]Lu X P, Xiao B G, Li Y P, Gui Y J, Wang Y, Fan L J. Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum). J Zhejiang Univ-Sci B (Biomed & Biotechnol), 2013, 14: 570–577



[37]Tong Z, Yang Z, Chen X, Jiao F, Li X, Wu X, Gao Y, Xiao B, Wu W. Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breed, 2012, 131: 674–680



[38]Murry H G, Thomspon W F. Rapid isolation of weight DNA. Nucl Acids Res, 1980, 8: 4321–4322



[39]Edgar R C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26, 2460–2461



[40]Trick M, Long Y, Meng J, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J , 2009, 7: 334–346



[41]Van Ooijen J W. JoinMap 4.0, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma B V, Wageningen



[42]Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78

[1] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[2] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[3] JIANG Shu-Kun,WANG Li-Zhi,YANG Xian-Li,LI Bo,MU Wei-Jie,DONG Shi-Chen,CHE Wei-Cai,LI Zhong-Jie,CHI Li-Yong,LI Ming-Xian,ZHANG Xi-Juan,JIANG Hui,LI Rui,ZHAO Qian,LI Wen-Hua. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1174-1184.
[4] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[5] ZENG Xin-Ying,GUO Jian-Bin,ZHAO Jiao-Jiao,CHEN Wei-Gang,QIU Xi-Ke,HUANG Li,LUO Huai-Yong,ZHOU Xiao-Jing,JIANG Hui-Fang,HUANG Jia-Quan. Identification of QTL related to seed size in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2019, 45(8): 1200-1207.
[6] Cheng-Jiang LI,Da-Fei LI,Gui-Su ZHOU,Long XU,Tian-Yang XU,Zheng-Xiong ZHAO. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289-296.
[7] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[8] BAI Yan-Ming,LI Long,WANG Hui-Yan,LIU Yu-Ping,WANG Jing-Yi,MAO Xin-Guo,CHANG Xiao-Ping,SUN Dai-Zhen,JING Rui-Lian. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat [J]. Acta Agronomica Sinica, 2019, 45(10): 1468-1477.
[9] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[10] Qiang PENG,Jia-Li LI,Da-Shuang ZHANG,Xue JIANG,Ru-Yue DENG,Jian-Qiang WU,Su-Song ZHU. QTL Mapping for Rice Appearance Quality Traits Based on a High-density Genetic Map in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(8): 1248-1255.
[11] SHEN Jie,CAI Yan,HE Yu-Ting,LI Qi-Quan,DU Xuan-Yan,WANG Chang-Quan,LUO Ding-Qi. Dynamic Simulation of Dry Matter Accumulation in Flue-cured Tobacco and Analysis of Its Characteristics Based on Normalized Method [J]. Acta Agron Sin, 2017, 43(03): 442-453.
[12] DENG Zhao**,SHI Shao-Jie**,WANG Hui-Ying,SHANG-GUAN Xin-Xin,LIU Bing-Fang,JING Sheng-Li,DU Bo,CHEN Rong-Zhi,ZHU Li-Li,HE Guang-Cun*. Analysis of QTLs for Brown Planthopper Resistance in Indica Rice WD15515 [J]. Acta Agron Sin, 2016, 42(03): 353-360.
[13] GUO Jian-Bin,HUANG Li,CHENG Liang-Qiang1,CHEN Wei-Gang,REN Xiao-Ping,CHEN Yu-Ning,ZHOU Xiao-Jing,SHEN Jin-Xiong,JIANGHui-Fang. An Integrated Genetic Linkage Map from Three F2 Populations of Cultivated Peanut (ArachishypogaeaL.) [J]. Acta Agron Sin, 2016, 42(02): 159-169.
[14] CHEN Guang-Feng,CHEN Jian-Sheng,TIAN Ji-Chun. Genome-Wide Association Analysis between SNP Markers and Plant Height Related Traits in Wheat [J]. Acta Agron Sin, 2015, 41(10): 1500-1509.
[15] QIN Wei-Wei,LI Yong-Xiang,LI Chun-Hui,CHEN Lin,WU Xun,BAI Na,SHI Yun-Su,SONG Yan-Chun,ZHANG Deng-Feng,WANG Tian-Yu,LI Yu. QTL Mapping for Kernel Related Traits Based on a High-Density Genetic Map [J]. Acta Agron Sin, 2015, 41(10): 1510-1518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!