Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (08): 1412-1423.doi: 10.3724/SP.J.1006.2014.01412

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Nitrogen Rates on Grain Yield and Population Quality of Mid-season Japonica Rice Cultivars at Different Decades in Jiangsu

CHEN Lu,ZHANG Wei-Yang,WANG Zhi-Qin,ZHANG Hao,LIU Li-Jun,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2013-12-16 Revised:2014-04-16 Online:2014-08-12 Published:2014-06-03
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

Abstract:

It is important to find a fast, reliable and accurate method for estimating canopy construction parameters in the study of vegetation-climate interaction. In the present study, three rice varieties with different canopy structures were chosen as experimental materials. A digital camera with a fisheye lens was used to take photos in eight heights of rice canopy to develop a new approach for concluding rice canopy. Canopy gaps were extracted from those photos, and then leaf area index (LAI) and mean leaf angle (MLA) could be inversed by Beer-Lambert theory, based on the quantitative relationship between the radiation condition and the canopy structure. Results showed that LAI inverted from the hemispherical photograph was 7.6%–13.1% less than that measured manually, and the root mean square error (RMSE) between them was 1.20–1.45. The data showed that hemispherical photography was better than Sunscan canopy system. Moreover, MLA inverted from the hemispherical photograph was related to that measured manually with 0.9205** of correlation coefficient and 11.7° of RMSE. Therefore, hemispherical photography is a feasible technology to indirectly measure the rice canopy structure.

Key words: Japonica rice, Improvement of cultivars, Nitrogen fertilizer, Grain yield, Population quality, Super rice

[1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plant Anal, 2003, 34: 259–270



[2]孔祥斗, 张洪熙, 刘晓静, 刘广清, 夏广宏, 刘晓斌, 谭长乐, 郭勋斌. 江苏省粳稻品种经济性状的演变及高产育种的设想. 江苏农业科学, 1997, (3): 2–16



Kong X D, Zhang H X, Liu X J, Liu G Q, Xia G H, Liu X B, Tan C L, Guo X B. The evolution of economic traits and the assumption of high yield breeding for japonica rice cultivars in Jiangsu Province. Jiangsu Agric Sci, 1997, (3): 2–16 (in Chinese)



[3]邓建平, 杜永林. 江苏粳稻生产现状及发展对策. 中国稻米, 2006, (4): 8–11



Deng J P, Du Y L. Present conditions and development counter-measures on japonica rice cultivars in Jiangsu Province. China Rice, 2006, (4): 8–11 (in Chinese)



[4]凌启鸿. 作物群体质量. 上海:上海科学技术出版社, 2000. pp 42–209



Ling Q H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 42–209 (in Chinese with English abstract)



[5]丁艳锋. 氮素营养调控水稻群体质量指标的研究. 南京农业大学博士学位论文, 南京, 1997



Ding Y F. Regulations of Rice Population Quality by Nitrogen Nutrition. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 1997 (in Chinese with English abstract)



[6]张满利, 陈盈, 侯守贵, 于广星, 李海波, 赵琦,付亮. 氮肥运筹对水稻分蘖、干物质积累和产量的影响. 辽宁农业科学, 2011, (3): 6–8



Zhang M L, Chen Y, Hou S G, Yu G X, Li H B, Zhao Q, Fu L. Effect of N-fertilizer management on the tiller, dry matter weight and yield of rice. Liaoning Agric Sci, 2011, (3): 6–8 (in Chinese with English abstract)



[7]彭显龙, 刘元英, 罗盛国, 范立春, 宋添星, 郭艳文. 实地氮肥管理对寒地水稻干物质积累和产量的影响. 中国农业科学, 2006, 39: 2286–2293



Peng X L, Liu Y Y, Luo S G, Fan L C, Song T X, Guo Y W. Effects of the site-specific nitrogen management on yield and dry matter accumulation of rice in cold areas of Northeastern China. Sci Agric Sin, 2006, 39: 2286–2293 (in Chinese with English abstract)



[8]Jiang L G, Dai T B, Jiang D, Cao W X, Gan X Q, Wei S Q. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res, 2004, 88: 239–250



[9]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Res, 2002, 74: 93–101



[10]刘立军, 徐国伟, 吴长付, 杨建昌. 实地氮肥管理下的水稻生长发育和养分吸收特性. 中国水稻科学, 2007, 21: 167–173



Liu L J, Xu G W, Wu C F, Yang J C. Characteristics of growth, development and nutrient uptake in rice under site specific nitrogen management. Chin J Rice Sci, 2007, 21: 167–173(in Chinese with English abstract)



[11]曾勇军, 石庆华, 潘晓华, 韩涛. 施氮量对高产早稻氮素利用特征及产量形成的影响. 作物学报, 2008, 34: 1409–1416



Zeng Y J, Shi Q H, Pang X H, Han T. Effects of nitrogen application amount on characteristics of nitrogen utilization and yield formation in high yielding early hybrid rice. Acta Agron Sin, 2008, 34: 1409–1416 (in Chinese with English abstract)



[12]薛亚光, 葛立立, 王康君, 颜晓元, 尹斌, 刘立军, 杨建昌. 不同栽培模式对杂交粳稻群体质量的影响. 作物学报, 2013, 39: 280–291



Xue Y G, Ge L L, Wang K J, Yan X Y, Yin B, Liu L J, Yang J C. Effects of different cultivation patterns on population quality of japonica hybrid rice. Acta Agron Sin, 2013, 39: 280–291 (in Chinese with English abstract)



[13]薛亚光, 陈婷婷, 杨成, 王志琴, 刘立军, 杨建昌. 中粳稻不同栽培模式对产量及其生理特性的影响. 作物学报, 2010, 36: 466–476



Xue Y G, Chen T T, Yang C, Wang Z Q, Liu L J, Yang J C. Effects of different cultivation patterns on the yield and physiological characteristics in mid-season japonica rice. Acta Agron Sin, 2010, 36: 466–476 (in Chinese with English abstract)



[14]Li M Y, Wang Z Q, Zeng L, Shi Q H, Pan X H, Tan X M. Effects of water deficit and increased nitrogen application in the late growth stage on physiological characters of anti-aging of leaves in different hybrid rice varieties. Agric Sci & Tech, 2012, 13: 2311–2322



[15]Wang L F, Chen Y Y. Photosynthetic characterization at different senescence stages in an early senescence mutant of rice Oryza sativa L. Photosynthetica, 2011, 49: 140–144



[16]唐拴虎, 徐培智, 张发宝, 陈建生, 谢春生. 一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响. 植物营养与肥料学报, 2006, 12: 63–69



Tang S H, Xu P Z, Zhang F B, Chen J S, Xie C S. Influence of single basal application controlled-release fertilizer on morphologic development of root system and lodging resistance of rice. Plant Nutr Fert Sci, 2006, 12: 63–69 (in Chinese with English abstract)



[17]郑圣先, 聂军, 戴平安, 郑颖俊. 控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响. 植物营养与肥料学报, 2006, 12: 188–194



Zheng S X, Nie J, Dai P A, Zheng Y J. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice. Plant Nutr Fert Sci, 2006, 12: 188–194 (in Chinese with English abstract)



[18]张耗, 谈桂露, 薛亚光, 王志琴, 刘立军, 杨建昌. 江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化. 作物学报, 2010, 36: 133–140



Zhang H, Tan G L, Xue Y G, Wang Z Q, Liu L J, Yang J C. Changes in grain yield and morphological and physiological characteristics during 60-year evolution of japonica rice cultivars in Jiangsu Province, China. Acta Agron Sin, 2010, 36: 133–140 (in Chinese with English abstract)



[19]熊洁, 陈功磊, 王绍华, 丁艳锋. 江苏省不同年代典型粳稻品种的产量及株型差异. 南京农业大学学报, 2011, 34(5): 1–6



Xiong J, Chen G L, Wang S H, Ding Y F. The difference in grain yield and plant type among typical japonica varieties in different years in Jiangsu Province. J Nanjing Agric Univ, 2011, 34(5): 1–6 (in Chinese with English abstract)



[20]章骏德, 刘国屏, 施永宁. 植物生理实验法. 南昌: 江西人民出版社, 1982. pp 52–57



Zhang J D, Liu G P, Shi Y N. Experimental Method for Plant Physiology. Nanchang: Jiangxi People’s Publishing House, 1982. pp 52–57 (in Chinese)



[21]杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32: 949–955



Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agron Sin, 2006, 32: 949–955 (in Chinese with English abstract)



[22]童平, 杨世民, 马均, 吴合洲, 傅泰露, 李敏, 王明田. 不同水稻品种在不同光照条件下的光合特性及干物质积累. 应用生态学报, 2008, 19: 505–510



Tong P, Yang S M, Ma J, Wu H Z, Fu T L, Li M, Wang M T. Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions. Chin J Appl Ecol, 2008, 19: 505–510 (in Chinese with English abstract)



[23]凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995, 21: 463–469



    Ling Q H, Su Z F, Zhang H Q. Relationship between earbearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995, 21: 463–469 (in Chinese with English abstract)



[24]凌启鸿, 张洪程, 丁艳峰. 水稻丰产高效技术及理论. 北京: 中国农业出版社, 2005



Ling Q H, Zhang H C, Ding Y F. Theory and Technology of High Yield and High Efficiency in Rice. Beijing: China Agriculture Press, 2005 (in Chinese)



[25]凌启鸿, 杨建昌. 水稻群体“粒叶比”与高产栽培途径的研究. 中国农业科学, 1986, 19(3): 1–8



Ling Q H, Yang J C. Studies on “Grain-leaf Ratio” of population and cultural approaches of high yield in rice plants. Sci Agric Sin, 1986, 19(3): 1–8 (in Chinese with English abstract)



[26]赵明, 李少昆, 王志敏, 王树安. 论作物源的数量、质量关系及其类型划分. 中国农业大学学报, 1998, 3(3): 53–58



Zhao M, Li S K, Wang Z M, Wang S A. Exposition on genotypes classification and relationship between quality and quantity of crop source. J China Agric Univ, 1998, 3(3): 53–58 (in Chinese with English abstract)



[27]苏祖芳, 张娟, 王辉斌, 杜永林, 张亚洁. 水稻群体茎蘖动态与成穗率和产量形成关系的研究. 江苏农学院学报, 1997, 18(1): 36–41



Su Z F, Zhang J, Wang H B, Du Y L, Zhang Y J. Study on relationship of tiller development of rice population with the effective ear percentage and rice formation. Jiangsu Agric Coll, 1997, 18(1): 36–41 (in Chinese with English abstract)



[28]胡文新. 国际水稻研究所新株型水稻的研究背景和现状. 江西农业学报, 2001, 13(4): 51–54



Hu W X. Background and current status of research on new plant type rice. Acta Agric Jiangxi, 2001, 13(4): 51–54 (in Chinese with English abstract)



[29]Janoria M P. A basic plant ideotype for rice. Rice Res, 1989, 14(3): 12–13



[30]IRRI. IRRI Towards 2000 and Beyond. Manila: IRRI, 1989. pp 36–37



[31]程式华, 曹立勇, 陈深广, 朱德峰, 王熹, 闵绍楷, 翟虎渠. 后期功能型超级杂交稻的概念及生物学意义. 中国水稻科学, 2005, 19: 280–284



Cheng S H, Cao L Y, Chen S G, Zhu D F, Wang X, Min S K, Zhai H Q. Conception of late-stage vigor super hybrid rice and its biological significance. Chin J Rice Sci, 2005, 19: 280–284 (in Chinese with English abstract)



[32]Cheng S H, Zhuang J Y, Fan Y Y, Du J H, Cao L Y. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100: 959–966



[33]Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38

[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[4] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[5] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[8] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[9] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[10] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[11] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[12] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[13] ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode [J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174.
[14] DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping [J]. Acta Agronomica Sinica, 2021, 47(6): 1175-1187.
[15] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!