Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (12): 2059-2069.doi: 10.3724/SP.J.1006.2014.02059

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Whole-Genome Sequence Isolation, Chromosome Location and Characterization of Primary Auxin-Responsive Aux/IAA Gene Family in Aegilops tauschii

QIAO Lin-Yi1,4,**,LI Xin1,**,CHANG Zhi-Jian1,ZHANG Xiao-Jun1,ZHAN Hai-Xian1,GUO Hui-Juan1,LI Jian-Bo4,CHANG Jian-Zhong3,*,ZHENG Jun2,*   

  1. 1Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; 2 Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, China; 3 Research Center of Dryland Farming, Shanxi Academy of Agricultural Sciences, Taiyuan 030006, China; 4Graduate School of Shanxi University, Taiyuan 030006, China
  • Received:2014-05-23 Revised:2014-09-16 Online:2014-12-12 Published:2014-10-20
  • Contact: 常建忠, E-mail: cjzyfx@163.com; 郑军, E-mail: zjsaas@126.com E-mail:qiaoly1988@126.com

Abstract:

Auxin, as one of the most important hormones, plays a key role in many processes of plant development. The Aux/IAA family contains important early auxin response genes. A genome-wide research of Aux/IAA genes in Aegilops tauschii was carried out using bioinformatic method. In this study, 28 Aux/IAA genes were identified in Ae. tauschii, which were distributed on seven chromosomes of Ae. tauschii genome. Twenty Aux/IAA genes share four conserved amino acid sequence motifs and five were mapped on the same locus with known markers. AetIAA3, AetIAA11, and AetIAA26 were specifically expressed in pistil, seed and root of Ae. tauschii, respectively. Eleven pairs of Ae. tauschiiTriticum urartu and five pairs of Ae. tauschiiHordeum vulgare Aux/IAA proteins were orthologous in the phylogenetic tree. Collinearity analysis indicated Aux/IAA genes showed a higher synteny between Ae. tauschii and two other species (Brachypodium distachyon and Oryza stativa). The Aux/IAA genes isolated can not only be applied in genetic improvement of common wheat but also provide basic information in further research of Aux/IAA genes in wheat.

Key words: Aegilops tauschii, Auxin, Aux/IAA gene family, Chromosome location, Bioinformatics

[1]Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005–1016



[2]Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks R M, Govaerts W, Friml J. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol, 2010, 21: 447



[3]Ljung K. Auxin metabolism and homeostasis during plant development. Development, 2013, 140: 943–950



[4]Abel S, Theologis A. Early genes and auxin action. Plant Physiol, 1996, 111: 9–17



[5]Rogg L E, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell, 2001, 13: 465–480



[6]Song Y, You J, Xiong L. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinos-teroid hormone responses and plant morphogenesis. Plant Mol Biol, 2009, 70: 297–309



[7]Kazan K, Manners J M. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 2009, 14: 373–382



[8]Strader L C, Chen G L, Bartel B. Ethylene directs auxin to control root cell expansion. Plant J, 2010, 64: 874–884



[9]Karen J H, Jaime F M, Eve-Marie J. Integration of light and auxin signaling. Cold Spring Harb Perspect Biol, 2009, 1: 1–11



[10]Reed J W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci, 2001, 6: 420–425



[11]Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol, 2002, 49: 373–385



[12]Tiwari S B, Hagen G, Guilfoyle T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16: 533–543



[13]Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453–460



[14]Tiwari S B, Wang X J, Hagen G, Guilfoyle T J. Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell, 2001, 13: 2809–2822



[15]Kepinski S and Leyser O. Auxin-induced SCF-TIR1-Aux/IAA interaction involves stable modification of the SCF/TIR1 complex. Proc Natl Acad Sci USA, 2004, 101: 12381–12386



[16]Walker J C, Key J L. Isolation of cloned cDNAs to auxin-responsive polyA RNAs of elongating soybean hypocotyl. Proc Natl Acad Sci USA, 1982, 79: 7185–7189



[17]Paul J O, Yoko O, José M A, April C, Chang C, Joseph R E, Beth H, Liu A, Courtney O, Hong Q, Alison S, Yu G X, Athanasios T. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell, 2005; 17: 3282–3300



[18]Jain M, Kaur N, Garg R, Thakur J K, Tyagi A K, Khurana J P. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics, 2006, 6: 47–59



[19]Udaya C K, Stephen P D, Amy M B, Gerald A T. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol, 2007, DOI: 10.1186/1471-2229-7-59



[20]Wang Y, Deng D, Bian Y, Lü Y, Xie Q. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol Biol Rep, 2010, 37: 3991–4001



[21]Han X, Xu X, Fang D D, Zhang T, Guo W. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Gene, 2012, 503: 83–91



[22]Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics, 2012, 287: 295–311



[23]Gan D, Zhuang D, Ding F, Yu Z, Zhao Y. Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus). J Genet, 2013, 92: 513–521



[24]Bhumica S, Archana C, Jitendra P K, Paramjit K. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot, 2006, 57: 4059–4070



[25]Rachel B, Manuel S, Matthias P, Gary L A B, Rosalinda D A, Alexandra M A, Neil M, Melissa K, Arnaud K, Dan B, Suzanne K, Darren W, Martin T, Ian B, Gu Y, Huo N X, Luo M C, Sunish S, Bikram G, Sharyar K, Olin A, Paul K, Jan D, Richard M, Anthony H, Klaus F M, Keith J E, Michael W B, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710



[26]Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F X, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, IWGSC, Yang H M, Liu X, He Z H, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95



[27]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90



[28]Eddy S R. Profile hidden Markov models. Bioinformatics, 1998, 14: 755–763



[29]Letunic I, Copley R R, Schmidt S, Ciccarelli F D, Doerks T, Schultz J, Ponting C P, Bork P. SMART 4.0: towards genomic data integration. Nucl Acids Res, 2004, 32: 142–144



[30]Finn R D, Tate J, Mistry J, Coggill P C, Sammut S J, Hotz H R, Ceric G, Forslund K, Eddy S R, Sonnhammer E L, Bateman A. The Pfam protein families database. Nucl Acids Res, 2008, 36: 281–288



[31]Luo M C, Deal K R, Akhunova E D, Akhunovaa A R, Anderson O D, Anderson J A, Blaked N, Clegge M T, Coleman-Derrb D, Conley E J, Crossman C C, Dubcovskya J, Gill B S, Gu Y Q, Hadam J, Heod H Y, Huo N X, Lazo G, Ma Y, Matthewsg D E, McGuirea P E, Morrell P L, Qualseta C O, Renfrob J, Tabanao D, Talbertd L E, Tiana C, Tolenoe D M, Warburtonh M L, You F M, Zhang W, Dvoraka J. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA, 2009, 106: 15780–15785



[32]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023–1026



Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29: 1023–1026 (in Chinese with English abstract)



[33]Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucl Acids Res, 2009, 37: 202–208



[34]Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan, P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947–2948



[35]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[36]Kepinski S and Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature, 2005, 435:446–451



[37]Kim J, Harter K, Theologis A. Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA, 1997, 94: 11786–11791



[38]Colón-Carmona A, Chen D L, Yeh K C, Abel S. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol, 2000, 124: 1728–1738



[39]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2009, 463:763–768



[40]Martin-Sanchez J A, Gomez-Colmenarejo M, Del Moral J, Sin E, Montes M J, González-Belinchón C, López-Braña I, Delibes A. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet, 2003, 106: 1248–1255



[41]Ni J, Zhu Z X, Wang G H, Shen Y X, Zhang Y Y, Wu P. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions. PLoS One, 2014, 9: e85358



[42]Jun N, Gaohang W, Zhenxing Z, Huanhuan Z, Yunrong W, Ping W. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J, 2011, 68:433–442



[43]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870–883



[44]王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 闫长生, 游光霞, 肖世和. 不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析.作物学报, 2008, 34: 1750–1756



Wang R X, Zhang X Y, Wu L, Wang R, Hai L, Yan C S, You G X, Xiao S H. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agron Sin, 2008, 34: 1750–1756 (in Chinese with English abstract)



[45]Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol, 2012, 53: 659–672

[1] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[2] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[3] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[4] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[5] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[6] CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379.
[7] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[8] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[9] YAO Jun-Yue,HUA Ying-Peng,ZHOU Ting,WANG Tao,SONG Hai-Xing,GUAN Chun-Yun,ZHANG Zhen-Hua. Identification and function analysis of AVP1, VHA-a2, and VHA-a3 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(8): 1146-1157.
[10] WANG Yu-Kui,ZHANG He-Cui,BAI Xiao-Jing,LIAN Xiao-Ping,SHI Song-Mei,LIU Qian-Ying,ZUO Tong-Hong,ZHU Li-Quan. Characteristics and expression analysis of BoPINs family genes in Brassica oleracea [J]. Acta Agronomica Sinica, 2019, 45(8): 1270-1278.
[11] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
[12] Gui-Hong LIANG,Ying-Peng HUA,Ting ZHOU,Qiong LIAO,Hai-Xing SONG,Zhen-Hua ZHANG. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(3): 365-380.
[13] Zuo-Min WANG,Jin LIU,Shi-Chao SUN,Xin-Yu ZHANG,Fei XUE,Yan-Jun LI,Jie SUN. Identification and Expression Analysis of Multidrug and Toxic Compound Extrusion Protein Family Genes in Colored Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1380-1392.
[14] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[15] Kun GAO,Ying-Peng HUA,Hai-Xing SONG,Chun-Yun GUAN,Zhen-Hua ZHANG,Ting ZHOU. Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(9): 1334-1346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!