Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (10): 1490-1499.doi: 10.3724/SP.J.1006.2015.01490

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Expression of Apoptosis Inhibitor Genes OpIAP and p35 Enhances Resistance to Rhizoctonia cerealis in Transgenic Wheat

SHEN Fang-Di1,2,HONG Yan-Tao2,DU Li- Pu2,XU Hui-Jun2,MA Ling-Jian1,*,ZHANG Zeng-Yan2,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2  National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetic and Breeding of Agriculture Ministry / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-03-31 Revised:2015-06-01 Online:2015-10-12 Published:2015-06-23

Abstract:

OpIAP (Orgyia pseudotsugata inhibitor of apoptosis protein) gene encodes an inhibitor of apoptosis protein (IAP) which comes from Orgyia pseudotsugata multicapsid polyhedrosis virus, p35 gene isolated from an Autographa californica nucleo-polyhedron virus encodes a 35 kDa apoptosis protein inhibitor. The expression of both genes displays enhanced resistance in tobacco, maize and cotton. In this study, the full-length coding sequences of OpIAP and p35 genes were synthesized, respectively. The transformation vector pUbi:p35-RSS1P:Myc-OpIAP containing two gene expression cassettes was constructed. In the expression vector pUbi:p35-RSS1P:Myc-OpIAP, the OpIAP gene was driven by the rice sucrose synthase-1 promoter and the p35 gene was driven by the maize ubiquitin promoter. Embryo calli of Yangmai 16 were bombarded by the gold particle containing pUbi:p35-RSS1P:Myc-OpIAP vector DNA. Transgenic wheat plants in T0–T2 generations were subjected to PCR, RT-PCR, qRT-PCR and Western blot analyses. The results indicated that the introduced OpIAP and p35 genes could be inherited and expressed in four transgenic wheat lines. Rhizoctonia cerealis isolate R0301 or WK207 was used to inoculate T1 and T2 plants for sharp eyespot severity assessments. The results showed that the transgenic wheat plants expressing OpIAP and p35 displayed significantly enhanced resistance to sharp eyespot compared with non-transgenic wheat Yangmai 16. Thus, the introduced OpIAP and p35 genes could be used in improving wheat resistance to wheat sharp eyespot caused by different Rhizoctonia cerealis isolates.

Key words: Apoptosis Inhibitor Gene, OpIAP, p35, Transgenic wheat, Wheat sharp eyespot

[1]Lemańczyk G, Kwa?na H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol, 2013, 135: 187–200



[2]Hamada M S, Yin Y, Chen H, Ma Z H. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Manag Sci, 2011, 67: 1411–1419



[3]张会云, 陈荣振, 冯国华, 刘东涛, 王静. 中国小麦纹枯病的研究现状与展望. 麦类作物学报, 2007, 27: 1150–1153



Zhang H Y, Chen R Z, Feng G H, Liu D T, Wang J. The research status and prospect of wheat sharp eyespot. J Triticeae Crops, 2007, 27: 1150–1153 (in Chinese with English abstract)



[4]吴纪中, 颜伟, 蔡士宾, 任丽娟, 汤頲. 小麦纹枯病抗性的主基因+多基因遗传分析. 江苏农业学报, 2005, 21(1): 6–11



Wu J Z, Yan W, Cai S B, Ren L J, Tang T. Genetic analysis of sharp eyespot resistance by using major gene plus polygene mixed inheritance analysis in wheat (Triticum aestivum). Jiangsu J Agric Sci, 2005, 21(1): 6–11 (in Chinese with English abstract)



[5]张小村, 李斯深, 赵新华, 李瑞军. 15个小麦重组自交系群体抗纹枯病性的遗传分析. 麦类作物学报, 2004, 24(3): 13–16



Zhang X C, Li S S, Zhao X H, Li R J. Genetic analysis on resistance to sharp eyespot by using fifteen populations of recombinant inbred lines in wheat. J Triticeae Crops, 2004, 24(3): 13–16 (in Chinese with English abstract)



[6]Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 2002, 9: 459–470



[7]Daniel P T. Dissecting the pathways to death. Leukemia, 2000, 14: 2035–2044



[8]Behrens T W, Mueller D L. Bcl-x and the regulation of survival in the immune system. Immunol Res, 1997, 16: 149–160



[9]Zhou Q, Snipas S, Orth K, Muzio M, Dixit V M, Salvesen G S. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J Biol Chem, 1997, 272: 7797–7800



[10]Yang Y, Fang S, Jensen J P, Weissman A M, Ashwell J D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science, 2000, 288: 874–877



[11]Wright C W, Clem R J. Sequence Requirements for Hid binding and apoptosis regulation in the baculovirus inhibitor of apoptosis Op-IAP Hid BINDS Op-IAP IN A MANNER SIMILAR TO Smac BINDING OF XIAP. J Biol Chem, 2002, 277: 2454–2462



[12]Hershberger P A, Dickson J A, Friesen P D. Site-specific mutagenesis of the 35-kilodalton protein gene encoded by Autographa californica nuclear polyhedrosis virus: cell line-specific effects on virus replication. J Virol, 1992, 66: 5525–5533



[13]Friesen P D, Miller L K. Divergent transcription of early 35-and 94-kilodalton protein genes encoded by the Hind III K genome fragment of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol, 1987, 61: 2264–2272



[14]Fisher A J, Zoog S J, Schneider C L, Friesen P D. Crystal structure of baculovirus p35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J, 1999, 18: 2031–2039



[15]Manji G A, Hozak R R, LaCount D J, Friesen P D. Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor p35 to prevent programmed cell death. J Virol, 1997, 71: 4509–4516



[16]Dickman M, Park Y, Oltersdorf T, Li W, Clemente T, French R. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA, 2001, 98: 6957–6962



[17]LaCount D J, Hanson S F, Schneider C L, Friesen P D. Caspase inhibitor p35 and inhibitor of apoptosis OpIAP block in vivo proteolytic activation of an effector caspase at different steps. J Biol Chem, 2000, 275: 15657–15664



[18]程梦兰. 转细胞凋亡抑制基因p35和iap玉米抗纹枯病的研究. 华中农业大学硕士学位论文, 湖北武汉, 2013. pp 76–79



Cheng M L. Transformation of Maize with Anti-Apoptotic Genes p35 and iap Confers Resistance to Sheath Blight. MSThesis of Huazhong Agricultural University, Wuhan, China, 2013. pp 76–79 (in Chinese with English abstract)



[19]Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T. Expression of baculovirus anti-apoptotic genes p35 and OpIAP in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium wilt. PloS One, 2010, 5: e14218



[20]徐惠君, 庞俊兰, 叶兴国, 杜丽璞, 李连城, 辛志勇, 马有志, 陈剑平, 陈炯, 程顺和, 吴宏亚. 基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究. 作物学报, 2001, 27: 688–693



Xu H J, Pang J L, Ye X G, Du L P, Li L C, Xin Z Y, Ma Y Z, Chen J P, Chen J, Cheng S H, Wu H Y. Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin, 2001, 27: 688–694 (in Chinese with English abstract)



[21]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8019



[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[23]王裕中, 吴志凤, 史建荣, 陈怀谷, 邵伯坤. 小麦纹枯病流行规律研究. 江苏农业科学, 1993, (麦类纹枯病专辑): 48–53



Wang Y Z, Wu Z F, Shi J R, Chen H G, Shao B K. epidemic law research of wheat sharp eyespot. Jiangsu Agric Sci, 1993, (special issue of wheat sharp eyesport): 48–53 (in Chinese)



[24]魏学宁, 任丽娟, 张淼, 张巧凤, 刘欣, 周淼平, 马鸿翔, 吴继中, 马翎健, 张增艳. 人工合成抗纹枯病小麦新种植的鉴定. 植物遗传资源学报, 2015, 16: 373–378



Wei X N, Ren L J, Zhang M, Zhang Q F, Liu X, Zhou M P, Ma H X, Wu J Z, Ma L J, Zhang Z Y. Identification of synthetic wheat accession with resistance to wheat sharp eyespot. J Plant Genet Resour, 2015, 16: 373–378 (in Chinese with English abstract)



[25]Paul J Y, Becker D K, Dickman M B, Harding R M, Khanna H K, Dale J L. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J, 2011, 9: 1141–1148



[26]Lincoln J E, Richael C, Overduin B, Smith K, Bostock R, Gilchrist D G. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad spectrum resistance to disease. Proc Natl Acad Sci USA, 2002, 99: 15217–15221



[27]Wang Z, Song J, Zhang Y, Yang B, Wang Y, Chen S. Mechanism analysis of broad-spectrum disease resistance induced by expression of anti-apoptotic p35 gene in tobacco. Chin J Biotech. 2008, 24: 1707–1713



[28]Chen L, Zhang Z, Liang H, Liu H, Du L, Xu H, Xin Z. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot, 2008, 59: 4195–4204



[29]Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol, 2014, 164: 1499–1514



[30]Hansen G. Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interactions, 2000, 13: 649–657



[31]Shi Y, Wang M B, Powell K S, Van Damme E, Hilder V A, Gatehouse A M R, Boulter D, Gatehouse J A. Use of the rice sucrose synthase-1 promoter to direct phloem specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot, 1994, 45: 623−631



[32]Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense and stress-related genes. New Phytol, 2012, 196: 1155–1170



[33]Streatfield S J, Magallanes-Lundback M E, Beifuss K K, Brooks C A, Harkey R L, Love R T, Bray J, Howard J A, Jilka J M, Hood E E. Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics. Transg Res, 2004, 13: 299–312

[1] SU Qiang,RONG Wei,ZHANG Zeng-Yan. Cloning and functional analysis of wheat receptor-like kinase gene TaPK3A [J]. Acta Agronomica Sinica, 2019, 45(8): 1158-1165.
[2] WANG Xiao-Ting,HUANG Suo,XU Zhao-Shi,LI Lian-Cheng,MA You-Zhi,CHEN-Ming,MIN Dong-Hong. Application of Pisum sativum Terminator rbc-T in Wheat Transformation [J]. Acta Agron Sin, 2017, 43(08): 1254-1258.
[3] WANG Yong-Xia,DU Xin-Hua,XU Wei-Gang,QI Xue-Li,LI Yan,WANG Hui-Wei,HU Lin. Photosynthetic Characteristics of Transgenic Wheat Expressing Maize C4-Type NADP-ME Gene [J]. Acta Agron Sin, 2016, 42(04): 600-608.
[4] YANG Kun,LIU Xin,DU Li-Pu,YE Xing-Guo,ZHANG Zeng-Yan. Development and Characterization of AcAMP-sn Transgenic Wheat with Enhanced Resistance to Wheat Take-all [J]. Acta Agron Sin, 2014, 40(01): 22-28.
[5] LIU Fei,YANG Li-Hua,WANG Ai-Yun,MA Xiao-Fei,DU Li-Pu,LIU Xin,LI Pan-Song,ZHANG Zeng-Yan,MA Ling-Jian. Molecular Detection and Take-all Response Assays of TiERF1-RC7 Transgenic Wheat [J]. Acta Agron Sin, 2013, 39(11): 2094-2098.
[6] YANG Li-Hua,WANG Jin-Feng,DU Li-Pu,XU Hui-Jun,WEI Xue-Ning,LI Zhao,MA Ling-Jian,ZHANG Zeng-Yan. Generation and Characterization of PgPGIP1 Transgenic Wheat Plants with Enhanced Resistance to Take-All and Common Root Rot [J]. Acta Agron Sin, 2013, 39(09): 1576-1581.
[7] DANG Liang,SU Zhen-Qi,YE Xing-Guo,XU Hui-Jun,LI Zhao,SHAO Yan-Jun,ZHANG Zeng-Yan. Overexpression of BvGLP1 in Transgenic Wheat Enhances Resistance to Common Root Rot [J]. Acta Agron Sin, 2013, 39(02): 368-372.
[8] ZHU Xiu-Liang,LI Zhao,DU Li-Pu,XU Hui-Jun,YANG Li-Hua,ZHUANG Hong-Tao,MA Ling-Jian,ZHANG Zeng-Yan. Development and Characterization of Wheat Lines with Resistance to Take-All and Powdery Mildew Diseases [J]. Acta Agron Sin, 2012, 38(12): 2178-2184.
[9] DANG Liang,WANG Ai-Yun,XU Hui-Jun,ZHU Xiu-Liang,DU Li-Pu,SHAO Yan-Jun,ZHANG Zeng-Yan. Development and Characterization of GmPGIP3 Transgenic Wheat Yangmai 18 with Enhanced Resistance to Common Root Rot [J]. Acta Agron Sin, 2012, 38(10): 1833-1838.
[10] WANG Jin-Feng,DU Li-Pu,LI Zhao,HUANG Su-Ping,YE Xing-Guo,FENG Dou,ZHANG Zeng-Yan. Development and Characterization of SN1 Transgenic Wheat Plants with Enhanced Resistance to Rhizoctonia cerealis and Bipolaris sorokiniana [J]. Acta Agron Sin, 2012, 38(05): 773-779.
[11] TUN Qiong, HU Wei-Gang, LI Yan, JI Hua-Li, HU Lin, ZHANG Lei, HAN Lin-Lin. Physiological Characteristics of Photosynthesis in Transgenic Wheat with Maize C4-PEPC Gene under Field Conditions [J]. Acta Agron Sin, 2011, 37(11): 2046-2052.
[12] SUN Yong-Wei, NIE Li-Na, MA Wei-Zhi, XU Zhao-Shi, JIA Lan-Qin. Cloning and Functional Analysis of Viviparous-1 Promoter in Wheat [J]. Acta Agron Sin, 2011, 37(10): 1743-1751.
[13] LI Zhao, PENG Hong-Chao, DU Li-Pu, ZHOU Miao-Beng, CA Shi-Bin, XU Hui-Jun, LI Shi-Shen, ZHANG Ceng-Yan. Utilization of Tissue Specific Expressing Promoter RSS1P in TiERF1 Transgenic Wheat [J]. Acta Agron Sin, 2011, 37(10): 1897-1903.
[14] LU Yan,ZHANG Zeng-Yan,REN Li-Juan,LIU Bao-Ye,LIAO Yong,XU Hui-Jun,DU Li-Pu,MA Hong-Xiang,REN Zheng-Long,JING Jin-Xue,XIN Zhi-Yong. Molecular Analyses on Rs-AFP2 Transgenic Wheat Plants and Their Resistance to Rhizoctonia cerealis [J]. Acta Agron Sin, 2009, 35(4): 640-646.
[15] DING Wen-Jing;WEI Yi-Qing;YE Xing-Guo;DU Li-Pu;XU Hui-Jun. Genetic Analysis of Alien Transferring Genes in Common Wheat and Their Effects on Agronomic Characters [J]. Acta Agron Sin, 2007, 33(06): 955-960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!