[1] 潘瑞炽, 董愚得. 植物生理学(第五版). 北京: 高等教育出版社, 1995. pp 33–34
Pan R C, Dong Y D. Plant Physiology (Fifth Edition). Beijing: Higher Education Press, 1995. pp 33–34
[2] Sanders D, Pelloux J, Brownlee C, Harper J F.Calcium at the crossroads of signaling. Plant Cell, 2002, 14(suppl): S401–S417
[3] Curran A C, Hwang I, Corbin J, Martinez S, Rayle D, Sze H, Harper J F. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain. J Biol Chem, 2000, 275: 30301–30308
[4] 祁碧菽, 李春光, 陈叶苗, 陆平利, 郝福顺, 沈国明, 陈珈, 王学臣. 水稻Ca2+/H+反向转运体OsCAX3的功能分析和亚细胞定位研究. 生物化学与生物物理进展, 2005, 32: 876–882
Qi B S, Li C G, Chen Y M, Lu P L, Hao F S, Shen G M, Chen J, Wang X C. Functional analysis of rice Ca2+/H+ antiporter OsCAX3 in yeast and its subcellular localization in plant. Prog Biochem Biophys, 2005, 32: 876–882 (in Chinese with English abstract)
[5] 朱晓军, 杨劲松, 梁永超, 娄运生, 杨晓英. 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响. 中国农业科学, 2004, 37: 1497–1503
Zhu X J, Yang J S, Liang Y C, Lou Y S, Yang X Y. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of riceseedlings under salt stress. Sci Agric Sin, 2004, 37: 1497–1503 (in Chinese with English abstract)
[6] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Plant Sci, 2005, 10: 383–389
[7] Mahajan S, Tuteja N. Calcium signaling network in plants: an overview. Plant Signal Behav, 2007, 2: 79–85
[8] Chinnusamy V, Zhu J K. Plant salt tolerance. Berlin Heidelberg: Springer, 2004 pp 241–270
[9] White P J, Broadley M R. Calcium in plants. Ann Bot, 2003, 92: 487–511
[10] 陈志远. 拟南芥AtCCX1基因的克隆、表达和功能鉴定. 西北农林科技大学博士学位论文, 陕西西安, 2011
Chen Z Y. Clone, Expression and Characterization of Arabidopsis AtCCX1. PhD Dissertation of North West Agriculture and Forestry University, Xi’an, China, 2011 (in Chinese with English abstract)
[11] Hirschi K D, Zhen R G, Cunningham K W, Rea P A, Fink G R. CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA, 1996, 93: 8782–8786
[12] Hirschi K D, Korenkov V D, Wilganowski N L, Wagner G J. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol, 2000, 124: 125–133
[13] Kamiya T, Akahori T M. Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast. Plant Cell Physiol, 2005, 46: 1735–1740
[14] 刘赵越, 童伟, 张英华, 方荣俊, 赵卫国, 李龙. 桑树Ca2+/H+反向转运体基因MCAX1的克隆及序列与表达分析. 蚕业科学, 2012, 38: 192–198
Liu Z Y, Tong W, Zhang Y H, Fang R J, Zhao W G, Li L. Molecular cloning, sequence and expression analyses of Ca2+/H+antiporter gene in mulberry(Morus L.).Acta Sericol Sin, 2012, 38: 192–198 (in Chinese with English abstract)
[15] Pittman J K, Hirschi K D. Regulation of CAX1, an ArabidopsisCa2+/H+ antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol, 2001, 127: 1020–1029
[16] Cheng N H, Pittman J K, Shigaki T, Hirschi K D. Characterization of CAX4, an ArabidopsisH+/cation antiporter. Plant Physiol, 2002, 128: 1245–1254
[17] Maser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, Sze H, Talke I N, Amtmann A, Maathuis F J M, Sanders D, Harper J F, Tchieu J, Gribskov M, Persans M W, Salt D E, Kim S A, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol, 2001, 126: 1646–1667
[18] Kamiya T, Akahori T, Ashikari M, Maeshima M. Expression of the vacuolar Ca2+/H+ exchanger, OsCAX1a, in rice: cell and age specificity of expression, and enhancement by Ca2+. Plant Cell Physiol, 2006, 47: 96–106
[19] Ueoka-Nakanishi H, Nakanishi Y, Tanaka Y, Maeshima M. Properties and molecular cloning of Ca2+/H+ antiporter in the vacuolar membrane of mung bean. Eur J Biochem, 1999, 262: 417–425
[20] 许莲. 棉花Ca2+转运相关基因的克隆与功能鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2011
Xu L. Isolation and Characterization of Ca2+ Transport Related Genes in Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2011 (in Chinese with English abstract)
[21] Cheng N H, Hirschi K D. Cloning and characterization of CXIP1, a novel PICOT domain-containing Arabidopsis protein that associates with CAX1. J Biol Chem, 2003, 278: 6503–6509
[22] Hirschi K D. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell, 1999, 11: 2113–2122
[23] Park S, Cheng N H, Pittman J K, Yoo K S, Park J, Smith R H, Hirschi K D. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol, 2005, 139: 1194–1206
[24] Park S, Kim C K, Pike L M, Smith R H, Hirschi K D. Increased calcium in carrots by expressing of an Arabidopsis H+/Ca2+ transporters. Mol Breed, 2004, 14: 275–282
[25] Luo G Z, Wang H W, Huang J, Tiara A G, Wang Y J, Zhang J S, Chen S Y. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 2005, 59: 809–820
[26] Pittman J K, Edmond C, Sunderland P A, Bray C M. A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis. J Biol Chem, 2009, 284: 525–533
[27] Catala R, Santos E, Alonso J M, Ecker J R, Martinez-Zapater J M, Salinas J. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell, 2003, 15: 2940–2951
[28] 马改艳, 徐学荣. 对当前我国甘蔗产业发展形势的分析与思考. 云南农业大学学报, 2013, 7: 29–35
Ma G Y, Xu X R. Analysis and deliberation on the current development situation of China’s sugar industry. J Yunnan Agric Univ, 2013, 7: 29–35 (in Chinese with English abstract)
[29] 黄珑, 苏炜华, 张玉叶, 黄宁, 凌辉, 肖新换, 阙友雄, 陈如凯. 甘蔗CIPK基因的同源克隆与表达. 作物学报, 2015, 41: 499–506
Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K. Cloning and expression analysis of CIPK gene in sugarcane. Acta Agron Sin, 2015, 41: 499–506 (in Chinese with English abstract)
[30] Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comp Appl Biosci, 1995, 11: 681–684
[31] Guo J L, Ling H, Wu Q B, Xu L P, Xue Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042–7042
[32] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-??CT method. Methods, 2001, 25: 402–408
[33] 周绚. 苹果Ca2+/H+反向转运体活性及其基因表达特性研究. 南京农业大学硕士学位论文, 江苏南京, 2009
Zhou X. Study on Ca2+/H+ antiporter activity and its gene expression of apple. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2009 (inChinese with English abstract)
[34] Reddy A S N. Calcium: silver bullet in signaling. Plant Sci,2001, 160: 381–404
[35] Miedema H, Bothwell J H, Brownlee C, Davies J M. Calcium uptake by plant cells-channels and pumps acting in concert. Trends Plant Sci, 2001, 6: 514–519
[36] 刘新, 孟繁霞, 张蜀秋, 娄成后. Ca2+参与水杨酸诱导蚕豆气孔运动时的信号转导. 植物生理与分子生物学学报, 2003, 29: 59–64
Liu X, Meng F X, Zhang S Q, Lou C H. Ca2+ is involved in the signal transduction during stomatal movement in Vicia faba L. induced by salicylic acid. J Plant Physiol Mol Biol, 2003, 29: 59–64 (in Chinese with English abstract)
[37] 郭园园, 陈江华, 周慧娜, 商慧文, 翟妞, 张艳玲. 不同镉积累基因型烟草CAX2基因克隆及序列分析. 南方农业学报, 2015, 46: 181–187
Guo Y Y, Chen J H, Zhou H N, Shang H W, Zhai N, Zhang Y L. Cloning and sequence analysis of CAX2 from two nicotiana genotypes with different Cd accumulating pattern. J Southern Agric, 2015, 46: 181–187 (in Chinese with English abstract)
[38] Nielsen H, Engelbrecht J, Brunak S, Heijine G V. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage site. Protein Eng, 1997, 10: 1–6
[39] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157: 105–132
[40] Nicoll D A, Longoni S, Philipson K D. Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science, 1990, 250: 562–565
[41] Blackford S, Rea P A, Sanders D. Voltage sensitivity of H+/Ca2+ antiport in higher plant tonoplast suggests a role in vacuolar calcium accumulation. J Biol Chem, 1990, 265: 9617–9620
[42] Ettinger W F, Clear A M, Fanning K J, Peck M L. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol, 1999, 119: 1379–1385
[43] Liu H, Zhang X X, Takano T, Liu S K. Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast. Biochem Bioph Res Co, 2009, 383: 392–396
[44] Xu L, Zahid K R, He L R, Zhang W W, He X, Zhang X L, Yang X Y, Zhu L F. GhCAX3 gene, a novel Ca2+/H+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction. PloS One, 2013, 8: e66303
[45] Cheng N H, Pittman J K, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt D E, Hirschi K D. Functional association of Arabidopsis CAX1 andCAX3 is required for normal growth and ion homeostasis. Plant Physiol, 2005, 138: 2048–2060
[46] Raz V, Fluhr R. Calcium requirement for ethylene-dependent responses. Plant Cell, 1992, 4: 1123–1130
[47] 李国婧, 周燮. 水杨酸与植物抗非生物胁迫. 植物学通报, 2001, 18: 295–302
Li G J, Zhou X. Salicylic acid and abiotic stress resistance in plants. Chin Bull Bot, 2001, 18: 295–302 (in Chinese with English abstract)
[48] 张占军. PEG-6000模拟干旱胁迫下秋地黄瓜萌芽期抗旱性评价. 甘肃农业科技, 2014, (5): 16–18
Zhang Z J. Evaluation of the drought resistance of autumn cucumber in germination stage under PEG-6000 simulated drought stress. Gansu Agric Sci Techn, 2014, (5): 16–18
[49] 张和臣, 尹伟伦, 夏新莉. 非生物逆境胁迫下植物钙信号转导的分子机制. 植物学通报, 2007, 24: 114–122
Zhang H C, Yin W L, Xia X L. The mechanism of Ca2+ signal transduction under abiotic stresses in plants.Chin Bull Bot, 2007, 24: 114–122 (in Chinese with English abstract)
[50] 陈沁, 刘友良. 谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用. 作物学报, 2000, 26: 365–371
Chen Q, Liu Y L. Effect of glutathion on active oxygen scavenging system in leaves of barley seedlings under salt stress. Acta Agron Sin, 2000, 26: 365–371 (in Chinese with English abstract) |