Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (10): 1437-1447.

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of QTLs for Bacterial Blight Resistance and Screening of Resistant Materials Using MAGICP opulations of Rice

CHEN Tian-Xiao1,2, ZHU Ya-Jun3, MI Xue-Fei3, CHEN Kai3, MENG Li-Jun3, ZUO Shi-Min1,*, and XU Jian-Long2,3,4,*   

  1. 1 Key Laboratory of Plant Functional Genomics of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518210, China; 4 Shenzhen Institute of Breeding & Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
  • Received:2016-03-07 Revised:2016-06-20 Online:2016-10-12 Published:2016-07-04
  • Contact: 徐建龙,E-mail:xujlcaas@126.com,Tel:010-82105854;左示敏,E-mail:smzuo@yzu.edu.cn,Tel:0514-87972136 E-mail:chentx2006@163.com

Abstract:

Three genetically interconnected multi-parents advanced generation inter-cross, (MAGIC), including two populations (DC1 and DC2) derived from four parents and one population from eight parents (DC3) were used to detect QTLs for resistance to two strains, a weak virulent C2 and a strong virulent GD-V of Xanthomonas oryzae pv. oryzae (Xoo) and to screen resistant breeding materials. Most parents were resistant to C2 and susceptible to GD-V. Transgressive segregations of lesion length for the two strains were observed in the three MAGIC populations and showed continuous distributions. A total of seven QTLs affecting lesion length of two strains were detected. Most QTLs showed quantitative resistance and obvious genetic background effect. Among the seven QTLs, QBbr11-1 and QBbr11-2 had less genetic background effect, which is valuable in rice breeding for disease resistance. Eight resistant lines pyramiding different QTLs were screened from the three MAGIC populations, indicating the combination of qualitative resistance gene and quantitative resistance gene can significantly improve resistance level. The eight resistant breeding lines could be used as resistant donors in rice breeding for resistance. The results indicated that the MAGIC populations are ideal material for genetic study and marker-assisted breeding, showing a tight integration of genetic research and breeding application in rice.

Key words: Multi-parentAdvancedGenerationInter-Crosses(MAGIC), Ricebacterialblight, Quantitativetraitloci(QTL), Genome-wideassociationstudy(GWAS), Rice

[1]MewTW.Currentstatusandfutureprospectsofresearchonbacterialblightofrice.AnnuRevPhytopathol,1987,25:359–382 [2]ChenS,LiuX,ZengL,Ou-YangDM,YangJ,ZhuX.Geneticanalysisandmolecularmappingofanovelrecessivegenexa34(t)forresistanceagainstXanthomonasoryzaepv.oryzae.TheorApplGenet,2011,122:1331–1338 [3]Ni?o-LiuDO,RonaldPC,BogdanoveAJ.Xanthomonasoryzaepathovars:Modelpathogensofamodelcrop.MolPlantPathol,2006,7:303–324 [4]虞玲锦,张国良,丁秀文,高雨,谢寅峰.水稻抗白叶枯病基因及其应用研究进展.植物生理学报,2012,48:223–231 YuLJ,ZhangGL,DingXW,GaoY,XieYF.Progressinidentificationandapplicationofresistancegenestobacterialblight.PlantPhysiolJ,2012,48:223–231(inChinesewithEnglishabstract) [5]罗利军,梅捍卫,赵新华,钟代彬,王一平,余新桥,应存山.水稻白叶枯病抗性基因定位及其小种专化性.中国科学,1998,28:536–541 LuoLJ,MeiHW,ZhaoXH,ZhongDB,WangYP,YuXQ,YingCS.Mappingofresistancegenestobacterialblightofriceandtheirracespecificityinrice.ChinSci,1998,28:536–541(inChinese) [6]KimSM,SuhJP,QinY,NohTH,ReinkeRF,JenaKK.Identificationandfine-mappingofanewresistancegene,Xa40,conferringresistancetobacterialblightracesinrice(OryzasativaL.).TheorApplGenet,2015,128:1933–1943 [7]章琦.中国杂交水稻白叶枯病抗性的遗传改良.中国水稻科学,2009,23:111–119 ZhangQ.GeneticsandimprovementofresistancetobacterialblightinhybridriceinChina.ChinJRiceSci,2009,23:111–119(inChinesewithEnglishabstract) [8]KhanMA,NaeemM,IqbalM.Breedingapproachesforbacterialleafblightresistanceinrice(OryzasativaL.),currentstatusandfuturedirections.EurJPlantPathol,2014,139:27–37 [9]PersonC,SamborskiDJ,RohringerR.Thegene-for-geneconcept.Nature,1962,194:561–562 [10]EaVDB,JonesJD.Plantdisease-resistanceproteinsandthegene-for-geneconcept.TrendsBiolchemSci,1998,23:454–456 [11]LiZK,LuoLJ,MeiHW,PatersonAH,ZhaoXH,ZhongDB,WangYP,YuXQ,ZhuL,TabienR,StanselJW,YingCS.A“defeated”riceresistancegeneactsasaQTLagainstavirulentstrainofXanthomonasoryzaepv.oryzae.MolGenGenet,1999,261:58–63 [12]ZhaoKY,TungCW,EizengaGC,WrightMH,AliML,PriceAH,NortonGJ,IslamMR,ReynoldsA,MezeyJ,McClungAM,BustamanteCD,McCouchSR.Genome-wideassociationmappingrevealsarichgeneticarchitectureofcomplextraitsinOryzasativa.NatCommun,2011,2:1–10 [13]MengLJ,ZhaoXQ,PonceK,LeungH,YeGY.QTLmappingforagronomictraitsusingmulti-parentadvancedgenerationinter-cross(MAGIC)populationsderivedfromdiverseeliteindicaricelines.FieldCropsRes,2016,189:19–42 [14]KauffmanHE,ReddyAPK,HsiehSPY,MercaSD.ImprovedtechniqueforevaluatingresistanceofricevarietiestoXanthomonasoryzae.PlantDisRep,1973,57:537–541 [15]BradburyP,ZhangZ,KroonD,CasstevensTY,BucklerE.TASSEL:softwareforassociationmappingofcomplextraitsindiversesamples.Bioinformatics,2007,23:2633–2635 [16]ValdarW,FlintJ,MottR.Simulatingthecollaborativecross:Powerofquantitativetraitlocidetectionandmappingresolutioninlargesetsofrecombinantinbredstrainsofmice.Genetics,2006,172:1783–1797 [17]CavanaghC,MorellM,MackayI,PowellW.FrommutationstoMAGIC,resourcesforgenediscovery,validationanddeliveryincropplants.CurrOpinPlantBiol,2008,11:215–221 [18]HuangBE,VerbylaKL,VerbylaAP,RaghavanC,SinghVK,GaurP,LeungH,VarshneyRK,CavanaghCR.MAGICpopulationsincrops:currentstatusandfutureprospects.TheorApplGenet,2015,128:999–1017 [19]BandilloN,RaghavanC,MuycoPA,SevillaMAL,LobinaIT,Dilla-ErmitaCJ,TungCW,McCouchS,ThomsonM,MauleonR,SinghRK,GregorioG,Redo?aE,LeungH.Multi-parentadvancedgenerationinter-cross(MAGIC)populationsinrice:progressandpotentialforgeneticsresearchandbreeding.Rice,2013,6:1–15 [20]LeungH,RaghavanC,ZhouB,OlivaR,ChoiIR,LacorteV,JubayML,CruzCV,GregorioG,SinghRK,UlatVJ,BorjaFN,MauleonR,AlexandrovNN,McNallyKL,HamiltonRS.Alleleminingandenhancedgeneticrecombinationforricebreeding.Rice,2015,8:1–11 [21]SunX,YangZ,WangS,ZhangQ.Identificationofa47-kbDNAfragmentcontainingXa4,alocusforbacterialblightresistanceinrice.TheorApplGenet,2003,106:683–687 [22]WangCT,TanMP,XuX,WenGS,ZhangDP,LinXH.Localizingthebacterialblightresistancegene,Xa22(t),toa100-Kilobasebacterialartificialchromosome.Phytopathology,2003,93:1258–1262 [23]郑崇珂,王春连,于元杰,梁云涛,赵开军.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位.作物学报,2009,35:1173–1180 ZhengCK,WangCL,YuYJ,LiangYT,ZhaoKJ.IdentificationandmolecularmappingofXa32(t),anovelresistancegeneforbacterialblight(Xanthomonasoryzaepv.oryzae)inrice.ActaAgronSin,2009,35:1173–1180(inChinesewithEnglishabstract) [24]郭嗣斌,张端品,林兴华.小粒野生稻抗白叶枯病新基因的鉴定与初步定位.中国农业科学,2010,43:2611–2618 GuoSB,ZhangDP,LinXH.IdentificationandmappingofanovelbacterialblightresistancegeneXa35(t)originatedfromoryzaminuta.SciAgricSin,2010,43:2611–2618(inChinesewithEnglishabstract) [25]苗丽丽,王春连,郑崇珂,车晋英,高英,温义昌,李贵全,赵开军.水稻抗白叶枯病新基因的初步定位.中国农业科学,2010,43:3051–3058 MiaoLL,WangCL,ZhengCK,CheJY,GaoY,WenYC,LiGQ,ZhaoKJ.Molecularmappingofanewgeneforresistancetoricebacterialblight.SciAgricSin,2010,43:3051–3058(inChinesewithEnglishabstract) [26]XiangY,CaoYL,XuCG,LiXH,WangSP.Xa3,conferringresistanceforricebacterialblightandencodingareceptorkinase-likeprotein,isthesameasXa26.TheorApplGenet,2006,113:1347–1355 [27]WangY,ZhangQ,ZhengTQ,CuiYR,ZhangWZ,XuJL,LiZK.Drought-toleranceQTLscommonlydetectedintwosetsofreciprocalintrogressionlinesinrice.Crop&PastureSci,2014,65:171–184 [28]WangY,ZangJP,SunY,AliJ,XuJL,LiZK.Background-independentquantitativetraitlocifordroughttoleranceidentifiedusingadvancedbackcrossintrogressionlinesinrice.CropSci,2013,53:430–441 [29]ChengLR,WangY,MengLJ,HuX,CuiYR,SunY,ZhuLH,AliJ,XuJL,LiZK.Identificationofsalt-tolerantQTLswithstronggeneticbackgroundeffectusingtwosetsofreciprocalintrogressionlinesinrice.Genome,2012,55:45–55 [30]杨静,孙勇,程立锐,周政,王韵,朱苓华,苍晶,徐建龙,黎志康.利用双向导入系群体检测遗传背景对耐盐QTL定位的影响.作物学报,2009,35:974?982 YangJ,SunY,ChengLR,ZhouZ,WangY,ZhuLH,CangJ,XuJL,LiZK.GeneticbackgroundeffectonQTLmappingforsalttolerancerevealedbyasetofreciprocalintrogressionlinepopulationsinrice.ActaAgronSin,2009,35:974?982(inChinesewithEnglishabstract) [31]BanerjeeD,ZhangX,BentAF.Theleucine-richrepeatdomaincandetermineeffectiveinteractionbetweenRPS2andotherhostfactorsinArabidopsisRPS2-mediateddiseaseresistance.Genetics,2001,158:439–450 [32]徐建龙,林贻滋,张炳林,翁锦屏.水稻白叶枯病抗性基因Xa-21的初步利用.浙江农业学报,1996,8:70–73 XuJL,LinYZ,ZhangBL,WengJP.StudyonutilizationofXa-21generesistanttobacterialblightinrice.ActaAgricZhejianggensis,1996,8:70–73(inChinesewithEnglishabstract) [33]SunXL,GaoYL,YangZF,XuCG,LiXH,WangSP,ZhangQF.Xa26,ageneconferringresistancetoXanthomonasoryzaepv.oryzaeinrice,encodesanLRRreceptorkinase-likeprotein.PlantJ,2004,37:517–527 [34]于彦春,滕胜,曾大力,董国军,钱前,黄大年,朱立煌.水稻抗白叶枯病微效QTL的定位分析.中国水稻科学,2003,17:315–318 YuYC,TengS,ZengDL,DongGJ,QianQ,HuangDN,ZhuLH.AnalysisofQTLsforresistancetoricebacterialbight.ChinJRiceSci,2003,17:315–318(inChinesewithEnglishabstract) [35]WangCM,SuCC,ZhaiHQ,WanJM.IdentificationofQTLsunderlyingresistancetoavirulentstrainofXanthomonasoryzaepv.oryzaeinricecultivarDV85.FieldCropsRes,2005,91:337–343 [36]LiZK,ArifM,ZhongDB,FuBY,Domingo-ReyJ,AliJ,VijayakumarCHM,YuSB,KhushGS.Complexgeneticnetworksunderlyingthedefensivesystemofrice(OryzasativaL.)toXanthomonasoryzaepv.oryzae.ProcNatlAcadSciUSA,2006,103:7994–7999 [37]ZhangF,XieXW,XuMR,WangWS,XuJL,ZhouYL,LiZK.DetectingmajorQTLassociatedwithresistancetobacterialblightusingasetofricereciprocalintrogressionlineswithhighdensitySNPmarkers.PlantBreed,2015,134:286–292 [38]ZhouYL,UzokweVNE,ZhangCH,ChengLR,WangL,ChenK,GaoXQ,SunY,ChenJJ,ZhuLH,ZhangQ,AliJ,XuJL,LiZK.ImprovementofbacterialblightresistanceofhybridriceinChinausingtheXa23genederivedfromwildrice(Oryzarufipogon).CropProtection,2011,30:637–644 [39]LeeSW,ChoiSH,HanSS,LeeDG,LeeBY.DistributionofXanthomonasoryzaepv.oryzaestrainsvirulenttoXa21inKorea.Phytopathology,1999,89:928–933 [40]ShantiML,GeorgeMLC,CruzCMV,BernardoMA,NelsonRJ,LeungH,ReddyJN,SridharR.IdentificationofresistancegeneseffectiveagainstricebacterialblightpathogenineasternIndia.PlantDis,2001,85:506–512 [41]曾列先,黄少华,伍尚忠.IRBB21(Xa21)对广东稻白叶枯病菌5个小种的抗性反应.植物保护学报,2002,29:97–100 ZengLX,HuangSH,WuSZ.ResistanceofIRBB21(Xa21)tofiveracesofbacterialblightinGuangdong.ActaPhytophylSin,2002,29:97–100(inChinese) [42]GuKY,YangB,TianDS,WuLF,WangDJ,SreekalaC,YangF,ChuZQ,WangGL,WhiteFF,YinZC.Rgeneexpressioninducedbyatype-IIIeffectortriggersdiseaseresistanceinrice.Nature,2005,435:1122–1125

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!