Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (1): 94-103.doi: 10.3724/SP.J.1006.2021.04156

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of sugarcane ScCRT1 gene and its response to SCMV infection

ZHANG Hai(), CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng*()   

  1. National Engineering Research Center for Sugarcane / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2020-07-14 Accepted:2020-09-13 Online:2021-01-12 Published:2020-09-22
  • Contact: XU Jing-Sheng E-mail:zhanghai940410@163.com;xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026)

Abstract:

Calreticulin (CRT) is widely expressed in eukaryotes. As a molecular chaperone and a Ca2+ binding protein, CRT is involved in many biological pathways such as the regulation of calcium homeostasis, calcium-dependent signaling, endoplasmic reticulum quality control, plant growth and development, immunity and response to stress. However, the response of CRT of sugarcane (Saccharum spp. hybrid) challenged by Sugarcane mosaic virus (SCMV) has not been reported. In this study, a CRT gene was cloned from the noble cane cultivar Badila (S. officinarum) and designed as ScCRT1. ScCRT1 had an open reading frame (ORF) length of 1281 bp and encoded 426 amino acids. Bioinformatics analysis showed that ScCRT1 was a stable hydrophilic protein and possesses a signal peptide at the N-terminal, a typical transmembrane domain, and a typical endoplasmic reticulum location signal at the C-terminal. The secondary structure of ScCRT1 was composed of mostly random coils. Phylogenetic tree analysis indicated that ScCRT1 belonged to the CRT1/CRT2 subtype and was divergent between monocotyledons and dicotyledons. Subcellular location assays showed that ScCRT1 was mainly located in the endoplasmic reticulum. Real-time quantitative PCR analysis showed that ScCRT1 gene was extensively expressed in different tissues of sugarcane, with the highest expression in leaf roll and the lowest expression in the 8th internode. ScCRT1 gene was up regulated in the early stage of SCMV infection, but down regulated with time going. ScCRT1 interacted with the 6K2 from SCMV as confirmed by yeast two hybrid and bimolecular fluorescence complementation assays. Based on these foundlings, we speculated SCMV interfered the calcium homeostasis by the interaction of 6K2 with ScCRT1, thereby facilitating viral infection of sugarcane.

Key words: sugarcane, SCMV, calreticulin, 6K2

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Strategy
ScCRT1-F ATGGCGATCCTCGAGAGG 基因克隆
ScCRT1-R CTAGAGCTCATCATGTTTA Gene cloning
BD-ScCRT1-F ATTAACAAGGCCATTACGGCCATGGCGATCCTCGAGAGGTC 酵母双杂交诱饵载体构建
BD-ScCRT1-R AACTGATTGGCCGAGGCGGCCCCGAGCTCATCATGTTTAGCATC Vector generation for Y2H
221-ScCRT1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGATCCTCGAGAGGTC 亚细胞定位
221-ScCRT1-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGAGCTCATCATGTTTAGCAT Subcellular localization
ScCRT1-qF CGCCAAGAAGTTAGCAGAGGAGAC 定量PCR
ScCRT1-qR CCTTGTCATCGTCCGCATCATCC Real-time-qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因
GAPDH-R TCCTCAG GGTTCCTGATGCC Reference gene
eEF-1α-F TTTCACACTTGGAGTGAAGCAGAT 内参基因
eEF-1α-R GACTTCCTTCACAATCTCATCATAA Reference gene
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV

Fig. 1

Amino acid sequence alignment and domains of Saccharum calreticulin (ScCRT1) Sorghum bicolor: SbCRT1 (XP_021307591.1); Zea mays: ZmCRT1 (XP_008670080.1); Setaria italic: SiCRT1 (XP_004981159.1); Brachypodium distachyon: BdCRT1 (XP_003563166.1); Oryza sativa: OsCRT1 (XP_015628738.1); Arabidopsis thaliana: AtCRT1 (NP_176030.1). Protein residues on the black background in all of these proteins are identical. The arrows indicate the approximate positions of the three domains (N, P and C). The predicted signal peptide, conserved CRT family motifs (CRT motif 1: KHEQKLDCGGGYVKLL; CRT motif 2: IMFGPDICG), triplicate repeats (A: PXXIXDPXX KKPEXWDD; B: GXWXAXXIXNPXYK, X represents arbitrary residue) [1] and the endoplasmic reticulum retention sequence HDEL was underlined in black. The putative nuclear targeting sequence (PPKKIKDPE) was underlined in red."

Fig. 2

Phylogenetic tree analysis of ScCRT1 protein and CRT proteins from other plant species"

Fig. 3

Subcellular localization of ScCRT1 fused with YFP in the epidermal cells of N. benthamiana A: fluorescent signal of ScCRT1-YFP; B: bright field; C: merged pictures. Bar = 25 μm."

Fig. 4

Expression profile of ScCRT1 in different sugarcane tissues The error bars represent the standard error of each treatment group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

Fig. 5

Expression profile of ScCRT1 under the infection of SCMV The error bars represent the standard error of each treatment group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

Fig. 6

Protein-protein interactions between ScCRT1 and SCMV-6K2 by Y2H assay The positive and negative controls are yeast cotransformants with plus pNubG-Fe65 pTSU2-APP and pNubG-Fe65 plus pPR3-N, respectively. DDO+X-Gal: synthetic defined yeast minimal medium lacking Leu and Trp but plus the 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside; QDO+X-Gal: synthetic defined yeast minimal medium lacking Leu, Trp, His, and Ade but plus the X-Gal."

Fig. 7

Interactions between ScCRT1 and SCMV-6K2 by BiFC assay ScCRT1 was fused to the C-terminal half of YFP, while SCMV-6K2 was fused to the N-terminal half of YFP. ScCRT1-YC and YN- SCMV-6K2 were transiently co-expressed in the epidermal cells of N. benthamiana. The fluorescent signal was monitored by confocal microscopy at 48 hours post inoculation (Bar = 25 μm)."

[1] Michalak M, Corbett E F, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J, 1999,344:281-292.
pmid: 10567207
[2] Jia X Y, Xu C Y, Jing R L, Li R Z, Mao X G, Wang J P, Chang X P. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot, 2008,59:739-751.
pmid: 18349049
[3] Qiu Y, Xi J, Du L, Poovaiah B W. The function of calreticulin in plant immunity: new discoveries for an old protein. Plant Signal Behav, 2012,7:907-910.
doi: 10.4161/psb.20721 pmid: 22827946
[4] Joshi R, Paul M, Kumar A, Pandey D. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene, 2019,714:144004.
pmid: 31351124
[5] Michalak M Robert Parker J M Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium, 2002,32:269-278.
doi: 10.1016/s0143416002001884 pmid: 12543089
[6] Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol, 2005,37:260-266.
doi: 10.1016/j.biocel.2004.02.030 pmid: 15474971
[7] Baluška F, Samaj J, Napier R, Volkmann D. Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J, 1999,19:481-488.
pmid: 10504570
[8] Chen M H, Tian G W, Gafni Y, Citovsky V. Effects of calreticulin on viral cell-to-cell movement. Plant Physiol, 2005,138:1866-1876.
pmid: 16006596
[9] Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. New Phytol, 2018,218:414-431.
pmid: 29332310
[10] Michalak M, Groenendyk J, Szabo E, Gold L I, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J, 2009,417:651-666.
doi: 10.1042/BJ20081847 pmid: 19133842
[11] Garg G, Yadav S, Ruchi, Yadav G. Key roles of calreticulin and calnexin proteins in plant perception under stress conditions: a review. Adv Life Sci, 2015,5:18-26.
[12] Krysko D V, Ravichandran K S, Vandenabeele P. Macrophages regulate the clearance of living cells by calreticulin. Nat Commun, 2018,9:4644.
pmid: 30405101
[13] Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett, 2018,193:25-34.
pmid: 29175313
[14] Venkateswaran K, Verma A, Bhatt A N, Shrivastava A, Manda K, Raj H G, Prasad A, Len C, Parmar V S, Dwarakanath B S. Emerging roles of calreticulin in cancer: implications for therapy. Curr Protein Pept Sci, 2018,19:344-357.
doi: 10.2174/1389203718666170111123253 pmid: 28079009
[15] Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S. Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun, 1993,190:1130-1135.
doi: 10.1006/bbrc.1993.1167 pmid: 8439313
[16] Li Z J, Onodera H, Ugaki M, Tanaka H, Komatsu S. Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice. Biol Pharm Bull, 2003,26:256-261.
doi: 10.1248/bpb.26.256 pmid: 12576690
[17] Xiang Y, Lu Y H, Song M, Wang Y, Xu W Q, Wu L T, Wang H C, Ma Z Q. Overexpression of a Triticum aestivum calreticulin gene (TaCRT1) improves salinity tolerance in tobacco. PLoS One, 2015,10:e0140591.
doi: 10.1371/journal.pone.0140591 pmid: 26469859
[18] Pröbsting M, Schenke D, Hossain R, Häder C, Thurau T, Wighardt L, Schuster A, Zhou Z, Ye W Z, Rietz S, Leckband G, Cai D. Loss of function of CRT1a (calreticulin) reduces plant susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Plant Biotechnol J, 2020. doi: 10.1111/pbi.13394.
doi: 10.1111/pbi.13506 pmid: 33131209
[19] Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X N, Robatzek S, Schulze-Lefert P. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J, 2009,28:3439-3449.
doi: 10.1038/emboj.2009.263 pmid: 19763087
[20] Caplan J L, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, Dinesh-Kumar S P. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe, 2009,6:457-469.
doi: 10.1016/j.chom.2009.10.005
[21] Shen W T, Yan P, Gao L, Pan X Y, Wu J Y, Zhou P. Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol Plant Pathol, 2010,11:335-346.
doi: 10.1111/j.1364-3703.2009.00606.x pmid: 20447282
[22] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4):65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand Sugar Industry. Sugar Canesugar, 2015, (4):65-72 (in Chinese with English abstract).
[23] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018,14(11):40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018,14(11):40-46 (in Chinese with English abstract).
[24] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152.
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8):147-152 (in Chinese with English abstract).
[25] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017,44:363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017,44:363-370 (in Chinese with English abstract).
[26] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018,48:389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018,48:389-394 (in Chinese with English abstract).
[27] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017,33(7):22-28.
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus . Biotechnol Bull, 2017,33(7):22-28 (in Chinese with English abstract).
[28] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus-long history but still a threat to industry. Crop Prot, 2012,42:74-78.
doi: 10.1016/j.cropro.2012.07.005
[29] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017,7:9868.
pmid: 28852157
[30] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ(Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract).
[31] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[32] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
pmid: 27185887
[33] Schaad M C, Jensen P E, Carrington J C. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum targeted viral protein. EMBO J, 1999, 16:4049-4059.
pmid: 9233814
[34] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
doi: 10.3390/ijms20163867
[35] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H Q, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013,4:351-360.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170
[36] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cylindrical inclusion protein of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
doi: 10.1104/pp.17.01484 pmid: 29089395
[37] Movahed N, Sun J, Vali H, Laliberté J F, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
doi: 10.1104/pp.18.01342 pmid: 30538165
[38] Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T. Enhanced fungicide resistance in Isaria fumosorosea following ionizing radiation-induced mutagenesis. FEMS Microbiol Lett, 2013,349:54-60.
doi: 10.1111/1574-6968.12295 pmid: 24164561
[39] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
doi: 10.1038/srep07042 pmid: 25391499
[40] Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004,22:325-337.
doi: 10.1007/BF02772676
[41] Nelson D, Glaunsinger B, Bohnert H J. Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana. Plant Physiol, 1997,114:29-37.
pmid: 9159940
[42] Jia X Y, He L H, Jing R L, Li R Z. Calreticulin: Conserved protein and diverse functions in plants. Physiol Plant, 2010,136:127-138.
doi: 10.1111/j.1399-3054.2009.1223.x pmid: 19453510
[43] Whitham S A, Yang C, Goodin M M. Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact, 2006,19:1207-1215.
pmid: 17073303
[44] Bengyella L, Waikhom S D, Allie F, Rey C. Virus tolerance and recovery from viral induced-symptoms in plants are associated with transcriptome reprograming. Plant Mol Biol, 2015,89:243-252.
doi: 10.1007/s11103-015-0362-6 pmid: 26358043
[45] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017,10:45-55.
[46] Akbar S, Yao W, Yu K, Qin L F, Ruan M H, Powell C A, Chen B S, Zhang M Q. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020. doi: 10.1007/s11120-019-00706-w.
doi: 10.1007/s11120-020-00784-1 pmid: 32979144
[47] Verchot J. How does the stressed out ER find relief during virus infection. Curr Opin Virol, 2016,17:74-79.
doi: 10.1016/j.coviro.2016.01.018 pmid: 26871502
[48] Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070
[49] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[50] Aidemark M, Andersson C J, Rasmusson A G, Widell S. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC Plant Biol, 2009,9:27.
pmid: 19284621
[51] Sivaguru M, Fujiwara T, Šamaj J, Baluška F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H. Aluminum- induced 1→3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol, 2000,124:991-1006.
doi: 10.1104/pp.124.3.991 pmid: 11080277
[52] Sujkowska-Rybkowska M, Znojek E. Localization of calreticulin and calcium ions in mycorrhizal roots of Medicago truncatula in response to aluminum stress. J Plant Physiol, 2018,229:22-31.
doi: 10.1016/j.jplph.2018.05.014 pmid: 30025219
[53] Li F F, Zhang C W, Tang Z W, Zhang L R, Dai Z J, Lyu S W, Li Y Z, Hou X L, Bernards M, Wang A M. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020. doi: 10.1111/nph.16716.
doi: 10.1111/nph.17123 pmid: 33259640
[54] Wei T Y, Zhang C W, Hong J, Xiong R Y, Kasschau K D, Zhou X P, Carrington J C, Wang A M. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010,6:e1000962.
doi: 10.1371/journal.ppat.1000962 pmid: 20585568
[55] Chai M, Wu X, Liu J, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020,94:e01898-19.
pmid: 31969439
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[5] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[6] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[7] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[8] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[9] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[10] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[11] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[12] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[13] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
[14] GAO Shi-Wu,FU Zhi-Wei,CHEN Yun,LIN Zhao-Li,XU Li-Ping,GUO Jin-Long. Cloning and expression analysis of metallothionein family genes in response to heavy metal stress in sugarcane (Saccharum officinarum L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 166-178.
[15] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!