Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1129-1140.doi: 10.3724/SP.J.1006.2022.12010
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHU Zheng1,2(), WANG Tian-Xing-Zi1,2, CHEN Yue1,2, LIU Yu-Qing1,2, YAN Gao-Wei1,2, XU Shan1,2, MA Jin-Jiao1,2, DOU Shi-Juan1,2, LI Li-Yun1,2,*(), LIU Guo-Zhen1,2,*()
[1] |
Liu W, Liu J L, Triplett L, Leach J E, Wang G L. Novel insights into the rice innate immunity against pathogens. Annu Rev Phytopathol, 2014, 52:213-241.
doi: 10.1146/phyto.2014.52.issue-1 |
[2] | Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 447:323-329. |
[3] |
Shen Y W, Sharma P, Silva F G, Ronald P C. The Xanthomonas oryzae pv. oryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5’-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol Microbiol, 2002, 44:37-48.
doi: 10.1046/j.1365-2958.2002.02862.x |
[4] |
Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P C. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270:1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370 |
[5] |
Pruitt R N, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson M R, Chan L J G, Luu D D, Chen H, Bahar O, Daudi A, Ruan D L, Majumder D, Chern M, Kalbacher H, Midha S, Patil P B, Sonti R V, Petzold C J, Liu C C, Brodbelt J S, Felix G, Ronald P C. The rice immune receptor XA21 recognizes a tyrosine- sulfated protein from a Gram-negative bacterium. Sci Adv, 2015, 1:1500245.
doi: 10.1126/sciadv.1500245 pmid: 26601222 |
[6] |
Wang Y S, Pi L Y, Chen X H, Chakrabarty P K, Jiang J, Leon A L D, Liu G Z, Li L C, Benny U, Oard J, Ronald P C, Song W Y, Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell, 2006, 18:3635-3646.
doi: 10.1105/tpc.106.046730 |
[7] |
Peng Y, Bartley L E, Chen X W, Dardick C, Chern M, Ruan R, Canlas P E, Ronald P C. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2008, 1:446-458.
doi: 10.1093/mp/ssn024 |
[8] |
Park C J, Ronald P C. Cleavage and nuclear localization of the rice XA21 immune receptor. Nat Commun, 2012, 3:920.
doi: 10.1038/ncomms1932 |
[9] | Park C J, Peng Y, Chen X W, Dardick C, Ruan D L, Bart R, Canlas P E, Ronald P C. Rice XB15, a Protein Phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol, 2008, 6:231. |
[10] |
Park C J, Wei T, Sharma R, Ronald P C. Overexpression of rice auxilin-like protein, XB21, induces necrotic lesions, up-regulates endocytosis-related genes, and confers enhanced resistance to Xanthomonas oryzae pv. oryzae. Rice, 2017, 10:27.
doi: 10.1186/s12284-017-0166-1 |
[11] |
Chen X W, Chern M, Canlas P E, Ruan D L, Jiang C Y, Ronald P C, Baulcombe D C. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci USA, 2010, 107:8029-8034.
doi: 10.1073/pnas.0912311107 |
[12] |
Jiang Y N, Chen X H, Ding X D, Wang Y S, Chen Q, Song W Y. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J, 2013, 73:814-823.
doi: 10.1111/tpj.2013.73.issue-5 |
[13] |
Chen X W, Zuo S M, Schwessinger B, Chern M, Canlas P E, Ruan D L, Zhou X G, Wang J, Daudi A, Petzold C J, Heazlewood J L, Ronald P C. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant, 2014, 7:874-892.
doi: 10.1093/mp/ssu003 |
[14] | Park C J, Bart R, Chern M, Canlas P E, Bai W, Ronald P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One, 2010, 5:9262. |
[15] |
Agarwal P, Reddy M P, Chikara J. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep, 2011, 38:3883-3896.
doi: 10.1007/s11033-010-0504-5 |
[16] |
Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5:199-206.
pmid: 10785665 |
[17] |
Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling. Mol Plant Microbe Interact, 2007, 20:492-499.
doi: 10.1094/MPMI-20-5-0492 |
[18] |
Peng Y, Bartley L E, Canlas P, Ronald P C. OsWRKY IIa transcription factors modulate rice innate immunity. Rice, 2010, 3:36-42.
doi: 10.1007/s12284-010-9039-6 |
[19] |
Cheng H T, Liu H B, Deng Y, Xiao J H, Li X H, Wang S P. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol, 2015, 167:1087-1099.
doi: 10.1104/pp.114.256016 |
[20] |
Hwang S H, Kwon S I, Jang J Y, Fang I L, Lee H, Choi C, Park S, Ahn I, Bae S C, Hwang D J. OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. Plant Cell Rep, 2016, 35:1975-1985.
doi: 10.1007/s00299-016-2012-0 |
[21] |
Liu X Q, Bai X Q, Wang X J, Chu C C. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol, 2007, 164:969-979.
doi: 10.1016/j.jplph.2006.07.006 |
[22] | Son S, An H K, Seol Y J, Park S R, Im J H. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae. Biochem Bioph Res Commu, 2020, 533:1262-1268. |
[23] |
Du D, Zhang C W, Xing Y D, Lu X, Cai L J, Yun H, Zhang Q L, Zhang Y Y, Chen X L, Liu M M, Sang X C, Ling Y H, Yang Z L, Li Y F, Lefebvre B, He G H. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnol J, 2021, 19:1052-1064.
doi: 10.1111/pbi.v19.5 |
[24] |
Vo K T X, Kim C Y, Hoang T V, Lee S K, Shirsekar G, Seo Y S, Lee S W, Wang G L, Jeon J S. OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice. Front Plant Sci, 2018, 8:2220.
doi: 10.3389/fpls.2017.02220 |
[25] |
Tao Z, Liu H B, Qiu D Y, Zhou Y, Li X H, Xu C G, Wang S P. A pair of allelic WRKY genes play opposite role in rice-bacteria interactions. Plant Physiol, 2009, 151:936-948.
doi: 10.1104/pp.109.145623 |
[26] | Seo Y S, Chern M, Bartley L E, Han M, Jung K H, Lee I, Walia H, Richter T, Xu X, Cao P J, Bai W, Ramanan R, Amonpant F, Arul L, Canlas P E, Ruan R, Park C J, Chen X W, Hwang S, Jeon J S, Ronald P C. Towards establishment of a rice stress response interactome. PLoS Genet, 2011, 7:e1002020. |
[27] |
Choi C, Hwang S H, Fang I R, Kwon S I, Park S R, Ahn I, Kim J B, Hwang D J. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol, 2015, 208:846-859.
doi: 10.1111/nph.2015.208.issue-3 |
[28] |
Yang S, Zhou L, Miao L Y, Shi J N, Sun C Q, Fan W, Lan J P, Chen H, Liu L J, Dou S J, Liu G Z, Li L Y. The expression and binding properties of the rice WRKY68 protein in the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae. J Integr Agric, 2016, 15:2451-2460.
doi: 10.1016/S2095-3119(15)61265-5 |
[29] |
Li X M, Bai H, Wang X Y, Li L Y, Cao Y H, Wei J, Liu Y M, Liu L J, Gong X D, Wu L, Liu S Q, Liu G Z. Identification and validation of rice reference proteins for western blotting. J Exp Bot, 2011, 62:4763-4772.
doi: 10.1093/jxb/err084 |
[30] | Guo M C, Lan J P, Shi J N, Guan M L, Wei J, Liu L J, Li L Y, Dou S J, Liu G Z. Western Blot detection of Xanthomonas oryzae pv. oryzae in rice. J Plant Pathol Microb, 2015, (S4):005. |
[31] | Wu Q, Hou M M, Li L Y, Liu L J, Hou Y, Liu G Z. Induction of pathogenesis-related proteins in rice bacterial resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. J Plant Pathol, 2011, 93:455-459. |
[32] |
Hou M M, Xu W J, Bai H, Liu Y M, Li L Y, Liu L J, Liu B, Liu G Z. Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. oryzae. Plant Cell Rep, 2012, 31:895-904.
doi: 10.1007/s00299-011-1210-z |
[33] | 陈悦, 王田幸子, 杨烁, 张彤, 马金姣, 燕高伟, 刘玉晴, 周艳, 史佳楠, 兰金苹, 魏健, 窦世娟, 刘丽娟, 杨明, 李莉云, 刘国振. 水稻转录因子OsWRKY68蛋白质的表达特征及其功能特性. 中国农业科学, 2019, 52:2021-2032. |
Chen Y, Wang T X Z, Yang S, Zhang T, Ma J J, Yan G W, Liu Y Q, Zhou Y, Shi J N, Lan J P, Wei J, Dou S J, Liu L J, Yang M, Li L Y, Liu G Z. Expression profiling and functional characterization of rice transcription factor OsWRKY68. Sci Agric Sin, 2019, 52:2021-2032. | |
[34] |
Chen Q, Huang X E, Chen X H, Shamsunnaher, Song W Y. Reversible activation of XA21-mediated resistance by temperature. Eur J Plant Pathol, 2018, 153:1177-1184.
doi: 10.1007/s10658-018-01634-6 |
[35] |
Ross C A, Liu Y, Shen Q X J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49:827-842.
doi: 10.1111/jipb.2007.49.issue-6 |
[36] |
Choi N Y, Lee E, Lee S G, Choi C H, Park S R, Ahn I, Bae S C, Hwang C H, Hwang D J. Genome-wide expression profiling of OsWRKY superfamily genes during infection with Xanthomonas oryzae pv. oryzae using real-time PCR. Front Plant Sci, 2017, 8:1628.
doi: 10.3389/fpls.2017.01628 |
[37] |
Tariq R, Wang C L, Qin T F, Xu F F, Tang Y C, Gao Y, Ji Z Y, Zhao K J. Comparative transcriptome profiling of rice near- isogenic line carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae. Int J Mol Sci, 2018, 19:717.
doi: 10.3390/ijms19030717 |
[38] |
Nuruzzaman M, Sharoni A M, Satoh K, Kumar A, Leung H, Kikuchi S. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation. J Plant Physiol, 2014, 171:2-13.
doi: 10.1016/j.jplph.2013.09.010 |
[39] |
Satoh K, Saji S, Ito S, Shimizu H, Saji H, Kikuchi S. Gene response in rice plants treated with continuous fog influenced by pH, was similar to that treated with biotic stress. Rice, 2014, 7:10.
doi: 10.1186/s12284-014-0010-9 |
[40] |
Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Srinivasan R. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49:865-879.
doi: 10.1093/pcp/pcn061 pmid: 18413358 |
[41] |
Qiu D Y, Xiao J, Xie W B, Cheng H T, Li X H, Wang S P. Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol, 2009, 9:74.
doi: 10.1186/1471-2229-9-74 |
[42] |
Zhou C L, Lin Q B, Lan J, Zhang T Y, Liu X, Miao R, Mou C L, Nguyen T, Wang J C, Zhang X, Zhou L, Zhu X J, Wang Q, Zhang X, Guo X P, Liu S J, Jiang L, Wan J M. WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response. Front Plant Sci, 2020, 11:691.
doi: 10.3389/fpls.2020.00691 |
[43] |
Zhang C Q, Xu Y, Lu Y, Yu H X, Gu M H, Liu Q Q. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta, 2011, 234:541-554.
doi: 10.1007/s00425-011-1423-y |
[44] |
Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G S, Muthukrishnan S, Datta S K. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet, 1999, 98:1138-1145.
doi: 10.1007/s001220051178 |
[45] |
Zhou X G, Liao H C, Chern M, Yin J J, Chen Y F, Wang J P, Zhu X B, Chen Z X, Yuan C, Zhao W, Wang J, Li W T, He M, Ma B, Wang Y W, Wang W M, Wu X J, Li P, Zhu L H, Li S G, Ronald P C, Chen X W. Loss of function of a rice TPR-domain RNA- binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA, 2018, 115:3174-3179.
doi: 10.1073/pnas.1705927115 |
[46] | Solekh R, Susanto F A, Joko T, Nuringtyas T R, Purwestri Y A. Phenylalanine ammonia lyase (PAL) contributes to the resistance of black rice against Xanthomonas oryzae pv. oryzae. J Plant Pathol, 2019, 426:359-365. |
[47] |
Gan Q, Bai H, Zhao X F, Tao Y, Zeng H P, Han Y N, Song W Y, Zhu L H, Liu G Z. Transcriptional characteristics of Xa21- mediated defense responses in rice. J Integr Plant Biol, 2011, 53:300-311.
doi: 10.1111/j.1744-7909.2011.01032.x |
[48] |
Cho M H, Lee S W. Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci, 2015, 16:29120-29133.
doi: 10.3390/ijms161226152 |
[49] |
Peng X X, Hu Y J, Tang X K, Zhou P L, Deng X B, Wang H H, Guo Z J. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta, 2012, 236:1485-1498.
doi: 10.1007/s00425-012-1698-7 |
[50] |
Choi N, Im J H, Lee E, Lee J, Choi C, Park S R, Hwang D J. OsWRKY10 transcriptional regulatory cascades are involved in basal defense and Xa1-mediated resistance. J Exp Bot, 2020, 71:3735-3748.
doi: 10.1093/jxb/eraa135 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[10] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[11] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[12] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[13] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[14] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
[15] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
|