Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3166-3178.doi: 10.3724/SP.J.1006.2022.13078

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of arbuscular mycorrhizal fungi on phosphorus and potassium absorption at grain filling stage under different nitrogen fertilizer input in maize

TIAN Ming-Hui(), YANG Shuo, DU Jia-Qi, ZHANG Chen-Xi, HE Tang-Qing, ZHANG Xue-Lin()   

  1. Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, China
  • Received:2021-09-16 Accepted:2022-05-05 Online:2022-12-12 Published:2022-05-12
  • Contact: ZHANG Xue-Lin E-mail:TMH613@163.com;xuelinzhang1998@163.com
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);National Key Research and Development Program of China(2018YFD0200605);Science and technology innovation fund of Henan Agricultural University(30500712)

Abstract:

Understanding the effects of arbuscular mycorrhizal fungi (AMF) on maize grain phosphorus (P) and potassium (K) absorption at grain filling stage with nitrogen (N) fertilizer input could provide a theoretical basis for the rational application of biological fertilizers in farmland and the improvement of nutrient uptake and utilization in farmland. Two factorial pot experiments were established during maize growth periods in Zhengzhou and Shangqiu. The two factors were N fertilizer rates (N1: 180 kg N hm-2; N2: 270 kg N hm-2), and mycorrhizae treatments (M0: no AMF inoculation; M1: AMF inoculation). Maize grain weight, plant biomass, root characteristics, plant P and K content and their accumulation were measured. Both N fertilizer rates and mycorrhizae significantly affected maize 100-kernel weight, grain-filling rate, root characteristics, plant P and K content, and their accumulation in Zhengzhou and Shangqiu, respectively. Grain P accumulation increased gradually at grain filling stage, while grain K accumulation increased first and then decreased. Compared with N1, 100-kernel weight and grain-filling rates for N2 treatment increased by 8.4% and 7.8%, and 58% and 79% for grain P and K accumulation in maize, respectively. Compared with M0 in maize, the presence of M1 in Zhengzhou and Shangqiu significantly increased 100-kernel weight, grain filling rates, grain P accumulation, and K accumulation under two N fertilizer conditions and the increases were higher in Shangqiu than Zhengzhou. Compared with M0, the presence of AMF for M1 treatment increased root length, root surface area, root volume, root diameter, and the number of root tips under the conditions of N1 or N2 input in both Zhengzhou and Shangqiu, respectively. In conclusion, the study showed that the presence of AMF could increase gain P and K accumulation and improve root absorption capacity, and increase the accumulation of P and K at maize grain filling stage, especially in lower nutrient area and lower nitrogen condition.

Key words: arbuscular mycorrhizal fungi, grain filling stage, nitrogen fertilizer rate, nutrient absorption, root characteristics

Table 1

Analysis of variance of N fertilizer rates and mycorrhizae on maize biomass, P and K accumulation, and root colonization at grain filling stage"

植株性状
Plant trait
氮肥用量
N fertilizer rate (N)
丛枝菌根真菌
Mycorrhizae (M)
氮肥用量×丛枝菌根真菌
N × M
郑州Zhengzhou 商丘Shangqiu 郑州Zhengzhou 商丘
Shangqiu
郑州Zhengzhou 商丘Shangqiu
生物量Biomass (g plant-1)
籽粒 Grain 93.3*** 1500.9*** 27.6*** 227.5*** 1.8 6.1*
叶 Leaf 249.1*** 131.3*** 26.1*** 69.2*** 0 8.4*
茎 Stem 403.8*** 0.9 98.6*** 190.8*** 1.1 30.9***
根 Root 181.7*** 85.7*** 25.7*** 47.7*** 4.4 0.4
磷累积量P accumulation (mg plant-1)
籽粒 Grain 66.4*** 145.4*** 41.0** 26.3*** 3.8 0
叶 Leaf 11.0** 3.9 8.2* 20.8** 0.2 1.4
茎 Stem 2.8 5.6* 8.1* 3.6 0.2 0.3
根 Root 7.3* 4.3 2.9 19.3** 0 3.9
钾累积量K accumulation (mg plant-1)
籽粒 Grain 179.1*** 234.7*** 68.3*** 47.4*** 1.6 0.7
叶 Leaf 116.0*** 81.8*** 26.5*** 44.7*** 4.6 0
茎 Stem 52.5*** 71.7*** 10.3** 19.0** 0.1 0.2
根 Root 70.5*** 272.0*** 9.1* 67.0*** 1.4 2.9
根系侵染率 Root colonization (%) 0.1 83.8*** 542.5*** 84,067.1*** 0 44.3***

Fig. 1

Effects of N fertilizer rates and mycorrhizae on maize root colonization in Zhengzhou A, B, C, and D represent the root colonization of N1M0, N2M0, N1M1, and N2M1 treatments, respectively. N1 and N2 represent 180 kg N km-2 and 270 kg N km-2; M0 and M1 represent without AMF and with AMF treatments, respectively."

Table 2

Effects of N fertilizer rates and mycorrhizae on maize root characteristics in Zhengzhou and Shangqiu"

地点
Location
取样时间
Sampling time
处理
Treatment
根系侵染率
Root colonization
(%)
根长
Root length
(cm plant-1)
根表面
Root surface area
(cm2 plant-1)
根体积
Root volume
(cm3 plant-1)
根直径
Root diameter
(mm plant-1)
根尖数
Root tips
郑州
Zhengzhou
R1 N1M0 32,512±73 b 7920±14 c 113.6±0.5 a 0.70±0.001 a 138,719±400 c
N1M1 31,131±191 c 8750±11 a 106.6±0.1 b 0.67±0.002 b 145,387±319 b
N2M0 29,230±192 d 7976±26 c 101.3±0.2 c 0.68±0.002 b 135,043±204 d
N2M1 34,560±229 a 8644±29 b 106.8±0.1 b 0.71±0.003 a 156,511±113 a
R5 N1M0 5.1±2.5 c 54,224±311 c 7973±18 d 95.7±0.1 d 0.51±0.003 c 137,150±152 c
N1M1 95.3±2.1 a 57,440±228 b 8508±34 c 99.2±0.3 c 0.55±0.005 b 139,509±679 c
N2M0 14.3±2.3 b 58,024±434 b 10,795±50 b 131.8±0.4 b 0.54±0.002 b 201,404±2982 a
N2M1 91.0±2.8 a 60,563±64 a 11,649±15 a 140.3±0.3 a 0.58±0.005 a 184,768±1664 b
商丘
Shangqiu
R1 N1M0 37,610±71 b 7075±8 c 93.6±0.3 a 0.57±0.004 a 100,900±426 c
N1M1 37,983±101 c 7248±11 a 91.4±0.2 b 0.56±0.002 b 117,597±596 b
N2M0 32,810±295 d 5906±22 c 87.8±0.4 c 0.59±0.001 b 87,988±292 d
N2M1 34,006±299 a 6348±28 b 98.6±0.1 b 0.61±0.003 a 100,642±26 a
R5 N1M0 12.1±4 b 26,072±165 c 5021±21 d 79.8±0.2 d 0.63±0.001 c 80,854±757 c
N1M1 85.0±4.6 a 32,894±138 b 6278±10 c 99.1±0.2 c 0.63±0.007 b 106,007±690 c
N2M0 22.3±3.6 b 32,037±144 b 6081±29 b 96.3±0.7 b 0.63±0.003 b 103,627±796 a
N2M1 79.1±3.9 a 33,328±185 a 6241±21 a 103.5±1.0 a 0.66±0.007 a 92,706±148 b

Fig. 2

Effects of N fertilizer rates and mycorrhizae on 100-kernel weight and grain-filling rates at grain filling stage in Zhengzhou (A and C) and Shangqiu (B and D) in maize Treatments are the same as those given in Fig. 1."

Fig. 3

Effects of N fertilizer rates and mycorrhizae on grain P and K content, and the accumulation at grain filling stage in maize in Zhengzhou (A, C, E, and G) and Shangqiu (B, D, F, and H) Treatments are the same as those given in Fig. 1."

Fig. 4

Effects of N fertilizer rates and mycorrhizae on P contents of maize root, stem, leaf at grain filling stage in Zhengzhou (A, C, and E) and Shangqiu (B, D, and F) Treatments are the same as those given in Fig. 1."

Fig. 5

Effects of N fertilizer rates and mycorrhizae on P accumulations of maize root, stem, leaf at grain filling stage in Zhengzhou (A, C, and E) and Shangqiu (B, D, and F) Treatments are the same as those given in Fig. 1."

Fig. 6

Effects of N fertilizer rates and mycorrhizae on K contents of maize root, stem, leaf at grain filling stage in Zhengzhou (A, C, and E) and Shangqiu (B, D, and F) Treatments are the same as those given in Fig. 1."

Fig. 7

Effects of N fertilizer rates and mycorrhizae on K accumulations of maize root, stem, leaf at grain filling stage in Zhengzhou (A, C, and E) and Shangqiu (B, D, and F) Treatments are the same as those given in Fig. 1."

Table 3

Pearson’s correlation coefficients (r) between maize grain weight and their P and K accumulation with 100-kernel weight, grain-filling rate, root colonization, and root characteristics"

器官
Plant organ
参数
Parameter
粒重
Grain weight
(g plant-1)
籽粒磷累积量
Grain P accumulation
(mg plant-1)
籽粒钾累积量
Grain K accumulation (mg plant-1)
郑州
Zhengzhou
商丘
Shangqiu
郑州
Zhengzhou
商丘
Shangqiu
郑州
Zhengzhou
商丘
Shangqiu
籽粒Grain 百粒重 100-grain weight (g) 0.946** 0.637** 0.917** 0.638** 0.965** 0.661**
灌浆速率 Grain-filling rate (g d-1 100-kernel-1) 0.808** 0.683** 0.727** 0.685** 0.811** 0.695**
根系Root 侵染率 Root colonization (%) 0.445 0.388 0.586* 0.406 0.513* 0.428
根长Length (cm plant-1) 0.797** 0.096 0.877** 0.137 0.825** 0.143
根表面积Surface area (cm2 plant-1) 0.977** -0.115 0.938** -0.074 0.962** -0.066
根直径Diameter (mm plant-1) 0.909** 0.794** 0.832** 0.792** 0.894** 0.811**
根体积 Volume (cm3 plant-1) 0.895** 0.815** 0.927** 0.825** 0.854** 0.845**
根尖数Tips 0.876** -0.126 0.792** -0.055 0.880** -0.073
[1] Zacher A, Baum C, de Mol F, Dehmer K J, Gerowitt B. Mixed growth with weeds promotes mycorrhizal colonization and increases the plant-availability of phosphorus under maize (Zea mays L.). Agronomy, 2021, 11: 1304.
doi: 10.3390/agronomy11071304
[2] Majeed A, Mehdi S M, Niaz A, Mahmood A, Ehsan-Ul-Haq, Ahmad N, Javid S, Mehmood A. Influence of P-enriched compost application on economics and P use efficiency of a maize- wheat rotation system. Crop J, 2018, 6: 651-658.
doi: 10.1016/j.cj.2018.05.007
[3] Doubková P, Vlasáková E, Sudová R. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil, 2013, 370: 149-161.
doi: 10.1007/s11104-013-1610-7
[4] Raghothama K G, Karthikeyan A S. Phosphate acquisition. Plant Soil, 2005, 274: 37-49.
doi: 10.1007/s11104-004-2005-6
[5] Xu Z Y, Ban Y H, Jiang Y H, Zhang X L, Liu X Y. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: a review. Pedosphere, 2016, 26: 592-617.
doi: 10.1016/S1002-0160(15)60067-4
[6] Dong H Z, Kong X Q, Li W J, Tang W, Zhang D M. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res, 2010, 119: 106-113.
doi: 10.1016/j.fcr.2010.06.019
[7] Cao M J, Yu H Q, Yan H K, Jiang C J. Difference in tolerance to potassium deficiency between two maize inbred lines. Plant Prod Sci, 2007, 10: 42-46.
doi: 10.1626/pps.10.42
[8] 展文洁, 刘剑钊, 梁尧, 袁静超, 张洪喜, 刘松涛, 蔡红光, 任军. 不同耕作方式对玉米根系特性及养分吸收转运的影响. 植物营养与肥料学报, 2020, 26: 817-825.
Zhan W J, Liu J Z, Liang Y, Yuan J C, Zhang H X, Liu S T, Cai H G, Ren J. Effects of different cultivation methods on maize root characteristics and nutrient absorption and translocation. J Plant Nutr Fert, 2020, 26: 817-825. (in Chinese with English abstract)
[9] 黄婷苗, 郑险峰, 侯仰毅, 李晓, 王朝辉. 秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响. 植物营养与肥料学报, 2015, 21: 853-863.
Huang T M, Zheng X F, Hou Y Y, Li X, Wang Z H. Yield and N, P and K uptake and utilization of winter wheat affected by straw return to soil. Plant Nutr Fert Sci, 2015, 21: 853-863. (in Chinese with English abstract)
[10] 侯云鹏, 孔丽丽, 蔡红光, 刘慧涛, 高玉山, 王永军, 王立春. 东北半干旱区滴灌施肥条件下高产玉米干物质与养分的积累分配特性. 中国农业科学, 2019, 52: 3559-3572.
Hou Y P, Kong L L, Cai H G, Liu H T, Gao Y S, Wang Y J, Wang L C. Dry matter and nutrient accumulation and distribution characteristics of high-yield corn under drip irrigation and fertilization in the semi-arid area of northeast China. Sci Agric Sin, 2019, 52: 3559-3572. (in Chinese with English abstract)
[11] Stamford N P, Felix F, Oliveira W, Silva E, Carolina S, Rnaud T, Freitas A. Interactive effectiveness of microbial fertilizer enriched in N on lettuce growth and on characteristics of an Ultisol of the rainforest region. Sci Hortic, 2019, 247: 242-246.
doi: 10.1016/j.scienta.2018.12.028
[12] Sukarno N, Smith F A, Smith S E, Scott E S. The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis: II. The effects on area of interface and efficiency of P uptake and transfer to plant. New Phytol, 1996, 132: 583-592.
doi: 10.1111/j.1469-8137.1996.tb01877.x pmid: 33863139
[13] Wang Q Q, Sheng J D, Wang Y J, Chen K, Lambers H, Wang X R. The relative contribution of indigenous and introduced arbuscular mycorrhizal fungi and rhizobia to plant nutrient acquisition in soybean/maize intercropping in unsterilized soils. Appl Soil Ecol, 168: 104124.
[14] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47: 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agron Sin, 2021, 47: 1603-1615. (in Chinese with English abstract)
[15] Hu J L, Lin X G, Wang J H, Dai J, Cui X C, Chen R R, Zhang J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): a field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biol Biochem, 2009, 41: 2460-2465.
doi: 10.1016/j.soilbio.2009.09.002
[16] Tuffen F, Eason W R, Scullion J. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biol Biochem, 2002, 34: 1027-1036.
doi: 10.1016/S0038-0717(02)00036-6
[17] Tisseranta E, Malbreil M, Martin F. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA, 2014, 111: 563.
[18] Chandrasekaran M, Boughattas S, Hu S J, Sang-Hyon O, Sa T M. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 2014, 24: 611-625.
doi: 10.1007/s00572-014-0582-7 pmid: 24770494
[19] Hisse I R, D’Andrea K E, Otegui M E. Source-sink relations and kernel weight in maize inbred lines and hybrids: responses to contrasting nitrogen supply levels. Field Crops Res, 2019, 230: 151-159.
doi: 10.1016/j.fcr.2018.10.011
[20] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47: 3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wai W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of spring maize varieties in different maturity periods. Sci Agric Sin, 2014, 47: 3557-3565. (in Chinese with English abstract)
[21] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51: 1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration n characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018, 51: 1878-1889. (in Chinese with English abstract)
[22] Liu X M, Gu W R, Li C F, Li J, Wei S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang province, China. J Integr Agric, 2021, 20: 511-526.
doi: 10.1016/S2095-3119(20)63403-7
[23] Gonzalez-Dugo1 V, Durand J, Gastal F. Water deficit and nitrogen nutrition of crops: a review. Agron Sustain Dev, 2010, 30: 529-544.
doi: 10.1051/agro/2009059
[24] Jia Q M, Sun L F, Mou H Y, Ali S, Liu D H, Zhang Y, Zhang P, Ren X L, Jia Z K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric Water Manage, 2018, 201: 287-298.
doi: 10.1016/j.agwat.2017.11.025
[25] Zare-Maivan H, Khanpour-Ardestani N, Ghanati F. Influence of mycorrhizal fungi on growth, chlorophyll content, and potassium and magnesium uptake in maize. J Plant Nutr, 2017, 40: 2026-2032.
doi: 10.1080/01904167.2017.1346119
[26] Koske B E, Gemma J N. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Prog, 1989, 4: 486-488.
[27] Gambín B L, Borrás L, Oteguim E. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2006, 101: 1-9.
doi: 10.1016/j.fcr.2006.09.001
[28] Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol, 1980, 84: 489-500.
doi: 10.1111/j.1469-8137.1980.tb04556.x
[29] Jin X N, Fu Z Y, Lyu P Q, Peng Q, Ding D, Li W H, Tang J H. Identification and characterization of microRNAs during maize grain filling. PLoS One, 2015, 10: e0125800.
[30] Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Garcia-Mina J, Yvin J, Ourry A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci, 2015, 6: 317.
doi: 10.3389/fpls.2015.00317 pmid: 26029223
[31] Veneklaas E J, Lambers H, Bragg J, Finnegan P M, Lovelock C E, Plaxton W C, Price C A, Scheible W, Shane M W, White P J, Raven J A. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol, 2012, 195: 306-320.
doi: 10.1111/j.1469-8137.2012.04190.x pmid: 22691045
[32] Sha Z M, Watanabe T, Chu Q N, Oka N, Osaki M, Shinano T. A Reduced phosphorus application rate using a mycorrhizal plant as the preceding crop maintains soybean seeds' nutritional quality. J Agric Food Chem, 2019, 67: 32-42.
doi: 10.1021/acs.jafc.8b05288
[33] 江尚焘, 王火焰, 周健民, 陈照明, 刘晓伟, 贾云生. 磷肥施用方式及类型对冬小麦产量和磷素吸收的影响. 应用生态学报, 2016, 27: 1503-1510.
doi: 10.13287/j.1001-9332.201605.034
Jiang S D, Wang H Y, Zhou J M, Chen Z M, Liu X W, Jia Y S. Effects of phosphate fertilizer application methods and types on winter wheat yield and phosphorus absorption. Chin J Appl Ecol, 2016, 27: 1503-1510. (in Chinese with English abstract)
[34] Real-Santillan R O, Del-Val E, Cruz-Ortega R, Contreras- Cornejo H A, Gonzalez-Esquivel C E, Larsen J. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda. Mycorrhiza, 2019, 29: 615-622.
[35] Zhang L, Xu M G, Liu Y, Zhang F S, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol, 2016, 210: 1022-1032.
doi: 10.1111/nph.13838 pmid: 27074400
[36] de Vries J, Evers J B, Kuyper T W, van Ruijven J, Mommer L. Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol, 2021, 231: 1171-1182.
doi: 10.1111/nph.17435
[37] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA, 2010, 107: 13754-13759.
doi: 10.1073/pnas.1005874107
[38] Mackay J E, Cavagnaro T R, Stover D S M, MacDonald L M, Gronlund M, Jakobsen I. A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil. Soil Biol Biochem, 2017, 102: 275-301.
[39] Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol, 2014, 276: 15-22.
[40] 刘颖, 贺静雯, 余杭, 林勇明, 王道杰. 干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比. 山地学报, 2020, 38: 668-678.
Liu Y, He J W, Yu H, Lin Y M, Wang D J. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. Mount Res, 2020, 38: 668-678. (in Chinese with English abstract)
[41] Honvault N, Houben D, Nobile C, Firmin S, Lambers H, Faucon M. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant Soil, 2021, 461: 137-150.
doi: 10.1007/s11104-020-04584-3
[42] McKay Fletcher D M, Ruiz S, Dias T, Petroselli C, Roose T. Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake. New Phytol, 2020, 227: 376-391.
doi: 10.1111/nph.16554 pmid: 32198932
[43] Ning P, Li S, Yu P, Zhang Y, Li C J. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res, 2013, 144: 19-27.
doi: 10.1016/j.fcr.2013.01.020
[44] Peng Y F, Yu P, Zhang Y, Sun G, Ning P, Li X X, Li C J. Temporal and spatial dynamics in root length density of field-grown maize and NPK in the soil profile. Field Crops Res, 2012, 131: 9-16.
doi: 10.1016/j.fcr.2012.03.003
[45] Zhang H Q, Wei S Z, Hu W T, Xiao L M, Tang M. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of gene encoding potassium channels in Lycium barbarum. Front Plant Sci, 2017, 8: 440.
[46] Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma, 2004, 223: 183-189.
pmid: 15221523
[47] Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol, 2014, 204: 638-649.
doi: 10.1111/nph.12937 pmid: 25039900
[48] Olsson P A, Hammer E C, Wallander H, Pallon J. Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microb, 2008, 74: 4144-4148.
doi: 10.1128/AEM.00376-08 pmid: 18469133
[49] Kim T, Lee B, Jung W, Kim K, Avice J, Ourry A. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct Plant Biol, 2004, 31: 847-855.
doi: 10.1071/FP04059
[50] Ruiz-Lozano J M, Porcel R, Bárzana G, Aroca R. Plant Responses to Drought Stress: from Morphological to Molecular Features. Germany: Springer-Verlag, 2012, pp 335-362.
[51] Paola A, Pierre B, Vincenza C, Vincenzo D M, Bruce V. Short term clay mineral release and re-capture of potassium in a Zea mays field experiment. Geoderma, 2016, 264: 54-60.
doi: 10.1016/j.geoderma.2015.10.005
[52] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028
[53] Wang X B, Cai D X, Hoogmoed W B, Perdok U D, Oenema O. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I. Grain yields and nutrient use efficiencies. Nutr Cycl Agroecosys, 2007, 79: 1-16.
doi: 10.1007/s10705-007-9113-7
[54] 张学林, 徐钧, 安婷婷, 侯小畔, 李潮海. 不同氮肥水平下玉米根际土壤特性与产量的关系. 中国农业科学, 2016, 49: 2687-2699.
Zhang X L, Xu J, An T T, Hou X P, Li C H. The relationship between maize rhizosphere soil characteristics and yield under different nitrogen fertilizer levels. Sci Agric Sin, 2016, 49: 2687-2699. (in Chinese with English abstract)
[55] Zhu C, Tian G L, Luo G W, Kong Y L, Guo J J, Wang W, Guo S W, Ling N, Shen Q R. N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agric Ecosyst Environ, 2018, 254: 191-201.
doi: 10.1016/j.agee.2017.11.029
[56] Milleret R, Bayon R, Gobat J. Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant Soil, 2009, 316: 1-12.
doi: 10.1007/s11104-008-9753-7
[57] 刘婷婷, 刘智蕾, 宋佳媚, 赖雨秋, 于彩莲, 彭显龙. 不同温度与供氮水平下丛枝菌根真菌对水稻养分吸收的影响. 土壤通报, 2019, 50: 885-890.
Liu T T, Liu Z L, Song J M, Lai Y Q, Yu C L, Peng X L. Effects of arbuscular mychorrhizal fungi on rice nutrient uptake under different temperature and nitrogen conditions. Chin J Soil Sci, 2019, 50: 885-890. (in Chinese with English abstract)
[58] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[1] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[2] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[5] ZHANG Fu-Liang, CHEN Bing-Jie, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize grain nitrogen uptake and the composition of soil bacteria communities [J]. Acta Agronomica Sinica, 2022, 48(12): 3215-3224.
[6] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[7] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[8] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[9] ZHANG Cheng-Xin,GUO Bao-Wei,TANG Jian,XU Fang-Fu,XU Ke,HU Ya-Jie,XING Zhi-Peng,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,HUANG Li-Fen,LU Yang,TANG Chuang,DAI Qi-Xing,ZHOU Miao,SUN Jun-Yi. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality [J]. Acta Agronomica Sinica, 2019, 45(8): 1208-1220.
[10] WANG Cui-Juan,SHI Chun-Yu,LIU Na,LIU Shuang-Rong,YU Xin-Di. Comparison of Root Characteristics and Sugar Components in Root and Leaf at Early Growth Phase of Sweet Potato Varieties with Significant Difference in Valid Storage Root Number [J]. Acta Agron Sin, 2016, 42(01): 131-140.
[11] ZHANG Xiao-Qin,XUE Da-Wei,ZHANG Guo-Ping. Changes of Arabinoxylan Content in Malting Barley under Different Environments and Cultivation Conditions [J]. Acta Agron Sin, 2013, 39(09): 1674-1678.
[12] JIANG Peng, HUANG Min, Md. Ibrahim, CENG Yan, JIA Bing, SHI Wan-Ju, XIE Xiao-Bing, JU Ying-Bin. Effects of “Sanding” Cultivation Method on Nutrient Uptake and Nitrogen Use Efficiency in Double Cropping Super Rice [J]. Acta Agron Sin, 2011, 37(12): 2194-2207.
[13] SUN Yong-Jian, SUN Wan-Wan, LIU Shu-Jin, YANG Zhi-Yuan, CHENG Hong-Biao, GU Xian-Wen, MA Jun. Effects of Water Management and Nitrogen Application Strategies on Nutrient Absorption, Transfer, and Distribution in Rice [J]. Acta Agron Sin, 2011, 37(12): 2221-2232.
[14] WAONG Yue-Xia, SUO Biao, ZHAO Teng-Fei, QU Xiao-Fei, YUAN Li-Gang, ZHAO Xue-Juan, ZHAO Hui-Jie. Effect of Abscisic Acid Treatment on psbA Gene Expression in Two Wheat Cultivars during Grain Filling Stage under Drought Stress [J]. Acta Agron Sin, 2011, 37(08): 1372-1377.
[15] ZHANG Yu-Qin, YANG Heng-Shan, GAO Ju-Lin, ZHANG Rui-Fu, WANG Zhi-Gang, XU Shou-Jun, FAN Xiu-Yan, BI Wen-Bo. Root Characteristics of Super High-Yield Spring Maize [J]. Acta Agron Sin, 2011, 37(04): 735-743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .