Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1968-1978.doi: 10.3724/SP.J.1006.2023.24152

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets

WANG Yuan1,2(), WANG Jin-Song1, DONG Er-Wei1, LIU Qiu-Xia1, WU Ai-Lian1, JIAO Xiao-Yan1,*()   

  1. 1College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2Key Laboratory of Sorghum Genetics & Germplasm Innovation of Shanxi Province, Jinzhong 030600, Shanxi, China
  • Received:2022-06-30 Accepted:2022-10-10 Online:2023-07-12 Published:2022-10-19
  • Contact: *E-mail: jiaoxiaoyan@sxagri.ac.cn E-mail:wangyuan1520@126.com;jiaoxiaoyan@sxagri.ac.cn
  • Supported by:
    The Shanxi Province Key Laboratory of Sorghum Genetics & Germplasm Innovation(2019K-2);The China Agriculture Research System of MOF and MARA(CARS-06-13.5-A20);The Science and Technology Research Project for Youth in Shanxi Province(201901D211559)

Abstract:

To investigate the effect of N application level on grain-filling and starch accumulation in individual sorghum grains, sorghum variety Fenjiuliang 1 was used as the experimental material in 2019 and 2020. Six N rates of 0, 75, 150, 225, 300, and 450 kg N hm-2 were applied before sowing to experimental plots in Shanxi, China. To analyze sorghum grain-filling and starch accumulation by the Richards’ growth equation, the superior and inferior spikelets were sampled at seven days intervals at each sampling from anthesis to maturity. The rational N application level (75 kg N hm-2) showed the maximum grain number per panicle resulting in the maximum yield per hectare. For both superior and inferior spikelets, N had similar effects on grain weight, grain morphology structure, the characteristics of grain-filling, and grain starch accumulation. The grain weight, grain volume, and grain-filling rate increased with the increase of N application rate, whereas the maximum grain weight and grain volume was obtained with the zero N treatment. The grain starch accumulation rate was highly correlated with the activity of ADP-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS). Compared to the zero N treatment, N application enhanced grain starch accumulation rate at early grain-filling stage and grain-filling rate, which may be due to the increased AGPase and SSS activity at the early grain-filling stage. Compared with rational N (75 kg N hm-2), excessive N (450 kg N hm-2) promoted grain starch accumulation by enhancing the activity of AGPase and SSS at the early grain filling stage, whereas zero N application enhanced sorghum grain weight and grain starch accumulation by extending the grain-filling duration and enhancing the activity of key enzymes in grain involved in sucrose-to-starch conversion at the late grain-filling stage.

Key words: sorghum, nitrogen, superior grains, inferior grains, grain filling, grain morphology, starch accumulation, starch biosynthesis enzymes

Fig. 1

Average daily temperature and rainfall in 2019 and 2020 growing seasons"

Fig. 2

Effect of N application on the grain yield per hectare (a) and grain number per panicle (b) of sorghum in 2019 and 2020 N0, N75, N150, N225, N300, and N450 indicate the rate of 0, 75, 150, 225, 300, and 450 kg N hm-2, respectively. Bar with different letters means significant differences among treatments in the same year at the 0.05 probability level."

Table 1

Effect of N application on the structure of sorghum grains and the characteristics of grain-filling in 2019 and 2020"

年份
Year
穗位
Spikelet
position
处理
N treatment
(kg hm-2)
单粒重
Weight per
grain
(mg)
籽粒体积
Volume per grain
(mm3)
籽粒密度
Grain
density
(g L-1)
活跃灌浆期
Active grain-filling period (d)
灌浆速率
Grain-filling
rate
(mg grain-1 d-1)
R2
2019 优势粒
Superior spikelets
0 20.3±0.17 d 16.83±0.17 d 1192.9±33.2 a 36.4±0.8 c 0.601±0.020 a 0.995**
75 18.6±0.11 ab 15.00±0.50 b 1240.0±24.7 ab 33.2±1.2 b 0.604±0.016 a 0.998**
150 18.1±0.30 a 13.40±0.23 a 1327.1±11.2 c 29.2±0.4 a 0.638±0.012 b 0.996**
225 18.0±0.20 a 14.83±0.09 b 1245.5±11.2 ab 29.9±1.1 a 0.623±0.018 b 0.997**
300 18.9±0.20 bc 14.87±0.13 b 1238.7±7.9 ab 31.8±1.1 ab 0.627±0.021 b 0.996**
450 19.3±0.22 c 15.82±0.22 c 1261.0±4.1 b 31.5±0.6 ab 0.637±0.025 b 0.997**
劣势粒
Inferior spikelets
0 18.2±0.18 c 15.50±0.29 c 1215.3±18.9 a 44.0±0.5 c 0.416±0.012 a 0.997**
75 16.7±0.07 a 14.67±0.73 bc 1192.6±43.1 a 36.9±0.9 a 0.472±0.014 cd 0.998**
150 16.7±0.10 a 12.92±0.36 a 1333.5±43.7 b 38.1±0.9 ab 0.452±0.013 b 0.996**
225 16.7±0.03 a 14.33±0.17 bc 1192.8±17.0 a 39.3±0.2 b 0.443±0.012 b 0.994**
300 16.9±0.03 a 14.00±0.12 ab 1239.4±12.4 ab 39.0±0.5 b 0.461±0.017 bc 0.995**
450 17.6±0.26 b 14.67±0.44 bc 1239.1±24.9 ab 38.6±0.2 ab 0.481±0.022 c 0.998**
2020 优势粒
Superior spikelets
0 20.4±0.26 c 18.50±0.58 c 1103.0±41.2 a 40.6±0.3 c 0.578±0.013 a 0.996**
75 18.8±0.11 a 15.67±0.33 b 1200.8±24.9 ab 36.8±0.4 ab 0.623±0.014 b 0.997**
150 18.9±0.12 a 14.00±0.50 a 1352.0±45.4 c 36.6±0.5 ab 0.642±0.018 b 0.996**
225 18.7±0.17 a 14.83±0.60 ab 1264.2±60.8 bc 37.7±0.6 b 0.616±0.011 b 0.996**
300 19.3±0.19 ab 15.00±0.50 ab 1288.5±34.3 bc 35.5±0.4 a 0.591±0.018 b 0.997**
450 19.8±0.24 b 15.33±0.33 ab 1289.9±38.9 bc 35.7±0.4 a 0.608±0.014 b 0.995**
劣势粒
Inferior spikelets
0 18.8±0.06 c 16.83±0.33 b 1119.4±18.1 a 46.3±0.4 d 0.400±0.009 a 0.994**
75 17.6±0.24 a 14.33±0.33 a 1232.0±30.2 b 42.4±0.3 bc 0.408±0.008 a 0.996**
150 18.3±0.28 b 14.83±0.44 a 1234.1±30.8 b 40.3±0.9 a 0.451±0.011 a 0.998**
225 18.1±0.05 ab 14.67±0.44 a 1233.3±34.0 b 40.8±0.7 ab 0.437±0.010 ab 0.996**
300 18.0±0.08 ab 14.83±0.17 a 1215.7±8.9 b 40.6±0.1 a 0.438±0.013 b 0.995**
450 19.1±0.11 c 15.17±0.17 a 1261.3±7.2 b 43.1±0.4 c 0.428±0.014 b 0.995**
方差分析ANOVA
Panicle position (P) ** ** * ** **
N treatment (N) ** ** ** ** **
Year (Y) ** ** NS ** **
N×P * NS NS NS NS
N×Y * * * NS NS
P×Y ** NS NS ** NS
N×P×Y NS NS NS ** NS

Fig. 3

Effect of N application on starch accumulation (a, b, c, d) and starch accumulation rate (e, f, g, h) in superior (a, c, e, g) and inferior (b, d, f, h) spikelets of sorghum in 2019 and 2020 The starch accumulation rate was calculated according to Richards’ equation. Treatments are the same as those given in Fig. 2."

Table 2

Effects of N application on activity of the enzymes involved in the sucrose-to-starch conversion in the superior grains of sorghum during 14 DPA to 28 DPA in 2019"

花后天数 Days post-anthesis 处理
N treatment
(kg hm-2)
酶活性Enzyme activity
ADP-葡萄糖焦磷酸化酶
ADP-glucose
pyrophosphorylase
(μmol grain-1 h-1)
可溶性淀粉合酶
Soluble starch
synthase
(μmol grain-1 h-1)
颗粒结合淀粉合酶
Granule-bound
starch synthase
(μmol grain-1 h-1)
淀粉分支酶
Starch branching
enzyme
(U grain-1 min-1)
14 d N0 0.258±0.007 a 0.21±0.013 a 0.13±0.0061 b 185.8±14.2 ab
N75 0.346±0.026 a 0.27±0.011 a 0.1±0.005 a 233.6±12.4 b
N450 0.549±0.025 b 0.37±0.035 b 0.16±0.0038 c 151.3±23.1 a
21 d N0 0.211±0.007 a 0.23±0.02 ab 0.18±0.006 b 406.5±15.2 b
N75 0.227±0.009 a 0.20±0.022 a 0.14±0.003 a 318.1±21.1 a
N450 0.258±0.013 b 0.31±0.033 b 0.20±0.004 c 327.8±5.2 a
28 d N0 0.200±0.011 b 0.18±0.013 a 0.14±0.002 a 452.1±25.7 b
N75 0.105±0.041 a 0.15±0.013 a 0.13±0.005 a 441.7±8.3 b
N450 0.128±0.036 a 0.19±0.012 a 0.13±0.011 a 367.2±9.5 a

Fig. 4

Effect of N application on the activity of AGPase (a), SSS (b), GBSS (c), and SBE (d) in sorghum superior spikelets in 2019 Treatments are the same as those given in Fig. 2."

Table 3

Correlation of starch accumulation rate with the activity of enzymes involved in sucrose-to-starch conversion during the rapid starch accumulation rate period (7-35 DPA) in 2019"

酶活性
Activity of enzymes
淀粉累积速率 Starch accumulation rate
N0 N75 N450 所有处理All treatment
ADP-葡萄糖焦磷酸化酶ADP-glucose pyrophosphorylase 0.935* 0.979** 0.950* 0.989**
可溶性淀粉合酶Soluble starch synthase 0.868 0.977** 0.976** 0.960**
颗粒结合淀粉合酶Granulebound starch synthase 0.631 0.412 0.785 0.652
淀粉分支酶Starch branching enzyme 0.220 0.240 0.065 0.166
[1] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[2] Gu J, Li Z, Mao Y, Struik P, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: S0168-9452(18)30135-3 pmid: 30080619
[3] Heyl A, Ramireddy E, Brenner W G, Riefler M, Allemeersch J, Schmülling T.The transcriptional repressor arr1-srdx suppresses pleiotropic cytokinin activities in Arabidopsis. Plant Physiol, 2008, 147: 1380.
[4] 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳交超级稻甬优538的穗部特征及籽粒灌浆特性. 作物学报, 2015, 41: 1858-1869.
doi: 10.3724/SP.J.1006.2015.01858
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Panicle traits and grain-filling characteristics of japonica/indica hybrid super rice Yongyou 538. Acta Agron Sin, 2015, 41: 1858-1869. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01858
[5] Fang H, Gu X, Jiang T, Yang J, Li Y, Huang P, Chen P, Yang J. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau, China. Soil Tillage Res, 2020, 199: 104546.
doi: 10.1016/j.still.2019.104546
[6] Liu X, Gu W, Li C, Li J, Wei S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang province, China. J Integr Agric, 2021, 20: 511-526.
doi: 10.1016/S2095-3119(20)63403-7
[7] Triboï E, Triboï-Blondel A M. Productivity and grain or seed composition: a new approach to an old problem. Eur J Agron, 2002, 16: 163-186.
doi: 10.1016/S1161-0301(01)00146-0
[8] Ookawa T, Naruoka Y, Sayama A, Hirasawa T. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Sci, 2004, 44: 2107-2115.
doi: 10.2135/cropsci2004.2107
[9] Muchow R C, Sinclair T R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci, 1994, 34: 721-727.
doi: 10.2135/cropsci1994.0011183X003400030022x
[10] Peng S, Cassman K G, Kropff M J, Peng S B. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics. Crop Sci, 1995, 35: 1627-1630.
doi: 10.2135/cropsci1995.0011183X003500060018x
[11] Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[12] Gregersen P L, Culetic A, Boshian L, Krupinska K. Plant senescence and crop productivity. Plant Mol Biol, 2013, 82: 603-622.
doi: 10.1007/s11103-013-0013-8 pmid: 23354836
[13] Guo Y, Gan S. Translational researches of leaf senescence for enhancing plant productivity and quality. J Exp Bot, 2014, 65: 3901-3913.
doi: 10.1093/jxb/eru248
[14] Assefa Y, Roozeboom K, Thompson C, Schlegel A, Stone L, Lingenfelser J. Corn and Sorghum Comparison:All Things Considered. Waltham: Academic Press, 2013. pp 71-86.
[15] Subbarao G V, Arango J, Masahiro K, Hooper A M, Yoshihashi T, Ando Y, Nakahara K, Deshpande S, Ortiz-Monasterio I, Ishitani M, Peters M, Chirinda N, Wollenberg L, Lata J C, Gerard B, Tobita S, Rao I M, Braun H J, Kommerell V, Tohme J, Iwanaga M. Genetic mitigation strategies to tackle agricultural GHG emissions: the case for biological nitrification inhibition technology. Plant Sci, 2017, 262: 165-168.
doi: S0168-9452(17)30095-X pmid: 28716411
[16] Oosterom E J, Chapman S C, Borrell A K, Broad I J, Hammer G L. Functional dynamics of the nitrogen balance of sorghum. II: Grain filling period. Field Crops Res, 2010, 115: 29-38.
doi: 10.1016/j.fcr.2009.09.019
[17] Marsalisa M A, Angadia S V, Contreras-Goveab F E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res, 2010, 116: 52-57.
doi: 10.1016/j.fcr.2009.11.009
[18] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879.
doi: 10.1093/jxb/42.7.871
[19] Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2010, 30: 261-270.
doi: 10.1023/A:1006356125418
[20] Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137-149.
doi: 10.1007/s00425-008-0725-1 pmid: 18340459
[21] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-192.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis in the process of grain filling in rice. Acta Agron Sin, 1998, 14: 182-192. (in Chinese with English abstract)
[22] Worch S, Rajesh K, Harshavardhan V T, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder M S, Sreenivasulu N. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol, 2011, 11: 1.
doi: 10.1186/1471-2229-11-1 pmid: 21205309
[23] Duffus C M. Control of starch biosynthesis in developing cereal grains. Biochem Soc Trans, 1992, 20: 13-18.
doi: 10.1042/bst0200013
[24] Emest M J, Bowsher C G, Hedley C, Hedley C, Burrell M M, Scrase-Field E S E, Tetlow I J. Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot, 2003, 54: 569-575.
pmid: 12508067
[25] Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation. Biochem Soc Trans, 1991, 19: 539-547.
doi: 10.1042/bst0190539
[26] Smith A M, Denyer K. Starch synthesis in developing pea embryos. New Phytol, 1992, 122: 21-33.
doi: 10.1111/j.1469-8137.1992.tb00049.x pmid: 33874037
[27] Déjardin A, Rochat C, Wuilléme S, Boutin J P. Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant Cell Environ, 2017, 20: 1421-1430.
doi: 10.1046/j.1365-3040.1997.d01-32.x
[28] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46: 620-628.
pmid: 15701658
[29] Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D, DuPont F M. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci, 2003, 164: 873-881.
doi: 10.1016/S0168-9452(03)00076-1
[30] Tuncel A, Okita T W. Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci, 2013, 211: 52-60.
doi: 10.1016/j.plantsci.2013.06.009 pmid: 23987811
[31] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Prod Sci, 2007, 10: 442-450.
doi: 10.1626/pps.10.442
[32] Nakamura Y. Towards a better understanding of the metabolite system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43: 718-725.
doi: 10.1093/pcp/pcf091
[33] Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833-839.
doi: 10.1093/oxfordjournals.pcp.a077813
[34] Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Technol, 2014, 51: 419-429.
doi: 10.1007/s13197-011-0520-z pmid: 24587516
[35] Zhang C, Jiang D, Liu F, Cai J, Dai T, Cao W. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. J Cereal Sci, 2010, 51: 226-233.
doi: 10.1016/j.jcs.2009.12.002
[36] Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J Food Sci Technol, 2014, 51: 419-429.
doi: 10.1007/s13197-011-0520-z pmid: 24587516
[37] Zhao F, Jing L, Wang D, Bao F, Lu W, Wang G. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci Rep (UK), 2008, 8: 6343.
doi: 10.1038/s41598-018-23977-0
[38] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300.
doi: 10.1093/jxb/10.2.290
[39] Schaffer A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739-746.
doi: 10.1104/pp.113.3.739 pmid: 12223639
[40] Subbarao G V, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu Y, Zakir H A K M, Deshpande S P, Hash C T, Sahrawat K L. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil, 2013, 366: 243-259.
doi: 10.1007/s11104-012-1419-9
[41] Hossain A K M Z, Subbarao G V, Pearse S J, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, Yoshida M. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol, 2008, 180: 442-451.
doi: 10.1111/j.1469-8137.2008.02576.x pmid: 18657214
[42] Muchow R C. Nitrogen utilization efficiency in maize and grain sorghum. Field Crops Res, 1998, 56: 209-216.
doi: 10.1016/S0378-4290(97)00132-9
[43] Schlegel A, Havlin J. Irrigated grain sorghum response to 55 years of nitrogen, phosphorus, and potassium fertilization. Agron J, 2021, 113: 464-477.
doi: 10.1002/agj2.v113.1
[44] 张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030.
doi: 10.3724/SP.J.1006.2011.01020
Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01020
[45] Zhang T, Zhu J, Wassmann R.Responses of rice yields to recent climate change in China: an empirical assessment based on long-term observations at different spatial scales (1981-2005). Agric For Meteorol, 2010, 150: 1128-1137.
doi: 10.1016/j.agrformet.2010.04.013
[46] Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta, 2015, 15: 1091-1107.
[47] Jiang Q, Du Y, Tian X, Wang Q, Xiong R, Xu G, Yan C, Ding Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. Eur J Agron, 2016, 74: 185-192.
doi: 10.1016/j.eja.2015.11.006
[48] Yang J, Zhang J, Wang Z, Xu G, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[49] Li Q, Du L, Feng D, Ren Y, Li Z, Kong F, Yuan J. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. Crop J, 2020, 8: 990-1001.
doi: 10.1016/j.cj.2020.04.001
[50] Slafer G A, Savin R. Source-sink relationships and grain mass at different positions within the spike in wheat. Field Crops Res, 1994, 37: 39-49.
[51] Acreche M M, Slafer G A. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Res, 2006, 98: 52-59.
doi: 10.1016/j.fcr.2005.12.005
[52] 杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36: 2011-2019.
doi: 10.3724/SP.J.1006.2010.02011
Yang J C. Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin, 2010, 36: 2011-2019. (in Chinese with English abstract)
[53] Wei S, Wang X, Li G, Qin Y, Jiang D, Dong S. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions. Front Plant Sci, 2019, 10: 180.
doi: 10.3389/fpls.2019.00180 pmid: 30881365
[54] Li G, Hu Q, Shi Y, Cui K, Nie L, Huang J, Peng S. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Front Plant Sci, 2018, 9: 1128.
doi: 10.3389/fpls.2018.01128 pmid: 30108604
[55] Yu W, Tan X, Zou W, Hu Z, Fox G, Gidley M, Gilbert R. Relationships between protein content, starch molecular structure and grain size in barley. Carbohyd Polym, 2017, 155: 271-279.
doi: S0144-8617(16)31030-X pmid: 27702512
[56] Brenner M L, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In: DaviesP J,eds. Plant Hormones. Dordrecht: Kluwer Academic Publishers, 1995. pp 649-670.
[57] Jameson P E, Song J. Cytokinin: a key driver of seed yield. J Exp Bot, 2005, 67: 593-606.
doi: 10.1093/jxb/erv461
[58] Pan J, Cui K, Wei D, Huang J, Xiang J, Nie L. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol Plant, 2011, 141: 321-331.
doi: 10.1111/j.1399-3054.2010.01441.x pmid: 21175644
[1] WANG Juan, XU Xiang‐Bo, ZHANG Mao‐Lin, LIU Tie‐Shan, XU Qian, DONG Rui, LIU Chun‐Xiao, GUAN Hai‐Ying, LIU Qiang, WANG Li‐Ming, and HE Chun‐Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[2] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[3] LIU Qiong , YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[4] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Chen-Yang, WANG Li-Fang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[5] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[6] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[7] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[8] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[9] LU Meng-Qi, XIE Ruo-Han, LI Xiang, YANG Ming-Chong, HE Zi-Wei, GAO Jie, ZHAO Xiao-Yan, SHEN Xiang-Ling, CHEN Yan, WANG Ji-Bin, HU Li-Hua, DUAN Ming-Zheng, WANG Ling-Qiang. Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum [J]. Acta Agronomica Sinica, 2023, 49(7): 1954-1967.
[10] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[11] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[12] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[13] LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385.
[14] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[15] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .