Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2738-2752.doi: 10.3724/SP.J.1006.2023.22065

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Yield performance and agronomic characteristics of a newly developed ultrashort-duration line in direct-seeded double-season rice system

PAN Xiang-Cheng1,2(), YANG Guo-Dong1, FU Ying-Ying1, WANG Xin-Yu1,3, XIONG Qu2, XU Le1,4(), PENG Shao-Bing1()   

  1. 1National Key Laboratory of Crop Genetic Improvement / Hubei Hongshan Laboratory / MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Xiaogan Academy of Agricultural Sciences, Xiaogan432000, Hubei, China
    3Rice Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China
    4College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2022-12-14 Accepted:2023-04-17 Online:2023-10-12 Published:2023-04-25
  • Contact: E-mail: speng@mail.hzau.edu.cn; E-mail: xule@neau.edu.cn
  • Supported by:
    National Science Foundation of China(31971845);China Agriculture Research System of MOF and MARA(Rice, CARS-01-20)

Abstract:

The objective of this study is to explore the yield performance and yield-related traits of a newly developed ultrashort-duration line in direct-seeded double-season rice system. An ultrashort-duration line named CPPC18, and four check cultivars (Xiangzaoxian 6, Zaoxian 615, Zhongzao 39, and Liangyou 152) were grown as the direct-seeded double-season rice in both plot-level and on-farm experiments in Hubei province in 2021. We measured canopy light interception, biomass accumulation, lodging characteristics, yield, and yield components. The result showed that the new line matured within 95 days in each season, and its annual growth duration was 180-183 days. This was 7-9 days longer than Xiangzaoxian 6, but 4-8 days and 16-22 days shorter than Zaoxian 615 and the combination of Zhongzao 39 (early season) and Liangyou 152 (late season), respectively. In the plot-level experiment, the annual yield of CPPC18 reached 14.9 t hm-2 and increased by 7.2%-14.6% compared with other cultivars. Yield advantage of CPPC18 was mainly attributed to its early vigor in early season and higher spikelets per m-2, grain filling percentage, and harvest index in late season. Besides, the lodging resistance of CPPC18 was stronger than other cultivars due to its lower plant height, the center of gravity height, and bending moment. Similarly, CPPC18 also had yield advantages over other cultivars in the on-farm experiment. The annual yield increased by 12.7%-21.6% over other cultivars. In conclusion, the newly developed ultrashort-duration line CPPC18 was suitable for direct-seeded, double-season rice system in central China for achieving high and stable yield.

Key words: agronomic characteristics, direct seeding double-season rice, ultrashort-duration, on-farm experiment, yield

Table 1

Initial soil characteristics of the field experiment"

季节
Season
地点
Site
有机质
Soil organic matter (g kg-1)
全氮
Total N
(%)
速效磷
Olsen P
(mg kg-1)
速效钾
Available K
(mg kg-1)
酸碱度
pH
早季
Early season
小区试验Plot-level experiment 25.5 0.19 8.5 168.3 5.49
生产示范On-farm experiment 24.8 0.16 6.1 193.0 5.52
晚季
Late season
小区试验Plot-level experiment 28.8 0.20 8.3 232.4 5.24
生产示范On-farm experiment 26.2 0.18 5.5 99.3 5.43

Table 2

Basic information of the tested genotypes in rice"

品种/品系
Genotype
简写
Abbreviation
父母本
Parents
水稻类型
Varietal type
选育单位
Breeding institute
CPPC05-235-B-1-6-9 CPPC18 早籼615/湘早籼6号
Zaoxian 615/Xiangzaoxian 6
常规籼稻
Conventional indica rice
本课题组选育
Our research group
湘早籼6号
Xiangzaoxian 6
XZX6 湘矮早9号/莲塘早
Xiangaizao 9/Liantangzao
常规籼稻
Conventional indica rice
沅江市农业科学研究所
Yuanjiang Institute of Agricultural Sciences
早籼615
Zaoxian 615
ZX615 早籼14/Y134
Zaoxian 14/Y134
常规籼稻
Conventional indica rice
安徽省农业科学院水稻研究所
Rice Research Institute, Anhui Academy of Agricultural Sciences
中早39
Zhongzao 39
ZZ39 嘉育253/中组3号
Jiayu 253/Zhongzu 3
常规籼稻
Conventional indica rice
中国水稻研究所
China National Rice Research Institute
两优152
Liangyou 152
LY152 HD9802S/R152 杂交籼稻
Hybrid indica rice
湖北省种子集团有限公司, 武汉大学
Hubei Provincial Seed Group Co., Ltd,
Wuhan University

Fig. 1

Daily mean temperature and solar radiation during growing season (early and late seasons) (plot-level experiment) Daily mean temperature and solar radiation during growing season are from the website of the National Meteorological Information Center of the China Meteorological Administration."

Table 3

Growth duration of tested genotypes in the early and late seasons (plot-level experiment) (d)"

季节
Season
品种/品系
Genotype
营养生长期
Vegetative stage
生殖生长期
Reproductive stage
籽粒灌浆期
Ripening stage
全生育期
Total growth duration
早季 CPPC18 40 25 30 95
Early season XZX6 42 21 26 89
ZX615 43 24 30 97
ZZ39 43 28 32 103
晚季 CPPC18 28 19 38 85
Late season XZX6 31 19 34 84
ZX615 28 22 41 91
LY152 31 22 46 99

Fig. 2

Yield performance of tested genotypes (plot-level experiment) Date are means of four replications, and vertical bars represent the standard errors. XZX6: Xiangzaoxian 6; ZX615: Zaoxian 615; ZZ39/LY152: the combination of Zhongzao 39 (early season) and Liangyou 152 (late season)."

Table 4

Daily yield, yield components, aboveground biomass at maturity, and harvest index of tested genotypes (plot-level experiment)"

季节
Season
品种/品系
Genotype
日产量
Daily yield
(kg hm-2 d-1)
单位面积穗数
Panicles
(m-2)
每穗颖花数
Spikelets
panicle-1
单位面积颖花数
Spikelets
(×103 m-2)
结实率
Grain filling
(%)
千粒重
1000-grain
weight
(g)
生物量
Biomass
(t hm-2)
收获指数
Harvest index
(%)
早季 CPPC18 79.8 a 417 b 93.5 c 38.9 a 83.1 a 21.2 c 13.9 a 49.2 b
Early season XZX6 73.8 b 471 a 88.0 d 41.4 a 79.5 a 19.2 d 12.8 b 49.6 b
ZX615 78.0 a 360 c 117.3 b 42.2 a 82.6 a 23.0 b 14.3 a 56.1 a
ZZ39 79.7 a 294 d 132.6 a 38.9 a 79.0 a 24.5 a 14.7 a 51.3 b
平均Mean 77.8 A 385 A 107.9 B 40.4 A 81.1 A 22.0 A 13.9 A 51.5 A
晚季 CPPC18 85.7 a 351 ab 114.2 ab 39.4 a 79.0 a 20.8 c 12.4 a 52.2 a
Late season XZX6 77.0 b 398 a 95.3 b 37.7 a 78.9 a 19.8 d 12.9 a 45.4 b
ZX615 68.3 c 304 b 129.4 a 39.2 a 63.5 b 22.1 b 12.4 a 44.0 b
LY152 57.7 d 295 b 129.0 a 37.5 a 51.2 c 23.5 a 12.1 a 37.2 c
平均Mean 72.2 B 337 B 117.0 A 38.0 B 68.1 B 21.6 B 12.5 B 44.7 B

Fig. 3

Relationship of grain yield with biomass at maturity (a) and harvest index (b) of tested genotypes (plot-level experiment)"

Table 5

Crop growth rate of tested genotypes during different growth stages in the early and late seasons (plot-level experiment)"

季节
Season
品种/品系
Genotype
作物生长速率 Crop growth rate (g m-2 d-1)
播种-幼穗分化期
SS-PI
幼穗分化-齐穗期
PI-HD
齐穗-成熟期
HD-MA
全生育期
SS-MA
早季 CPPC18 5.5 a 22.6 b 20.2 a 14.6 a
Early season XZX6 4.6 b 29.0 a 18.3 a 14.3 a
ZX615 3.7 c 28.5 ab 19.4 a 14.7 a
ZZ39 3.8 c 29.3 a 15.2 a 14.2 a
平均Mean 4.4 B 27.4 A 18.3 A 14.5 A
晚季 CPPC18 6.4 b 27.0 a 14.5 a 14.6 ab
Late season XZX6 8.9 a 23.3 a 9.1 b 12.2 c
ZX615 8.6 a 25.5 a 15.9 a 15.4 a
LY152 5.9 b 24.2 a 13.2 ab 13.6 bc
平均Mean 7.5 A 25.0 B 13.2 B 14.0 A

Fig. 4

Light interception percentage (a, c) and radiation use efficiency (b, d) of tested genotypes during different growth periods in the early and late seasons (plot-level experiment) Date are means of four replications, and vertical bars represent the standard errors. XZX6: Xiangzaoxian 6; ZX615: Zaoxian 615; ZZ39/LY152: the combination of Zhongzao 39 (early season) and Liangyou 152 (late season)."

Table 6

Stem number, leaf area index at mid-tillering stage (MT), and panicle initiation stage (PI) of tested genotypes (plot-level experiment)"

季节
Season
品种/品系
Genotype
茎蘖数Stem number 叶面积指数Leaf area index
MT PI HD MT PI HD
早季 CPPC18 528 a 706 a 717 a 1.17 a 3.34 a 6.97 a
Early season XZX6 583 a 747 a 786 a 1.03 a 3.17 a 6.87 ab
ZX615 328 b 497 b 553 b 0.68 b 2.06 b 5.71 b
ZZ39 347 b 534 b 556 b 0.70 b 2.28 b 6.75 ab
平均Mean 403 B 583 A 653 A 0.81 B 2.53 B 6.58 A
晚季 CPPC18 647 ab 626 ab 477 b 1.13 ab 3.12 b 5.65 bc
Late season XZX6 769 a 712 a 535 a 1.06 ab 4.50 a 6.62 ab
ZX615 562 b 543 b 390 c 0.97 b 2.57 b 5.04 c
LY152 723 a 604 b 452 b 1.24 a 4.57 a 6.93 a
平均Mean 695 A 614 A 464 A 1.16 A 4.07 A 6.06 B

Fig. 5

Lodging index of tested genotypes in the early and late seasons (plot-level experiment) Date are means of four replications, and vertical bars represent the standard errors. XZX6: Xiangzaoxian 6; ZX615: Zaoxian 615; ZZ39/LY152: the combination of Zhongzao 39 (early season) and Liangyou 152 (late season)."

Table 7

Lodging index and lodging-related traits of tested genotypes in the early and late seasons (plot-level experiment)"

季节
Season
品种/品系
Genotype
PH
(cm)
GH
(cm)
ID
(mm)
CWT
(mm)
DLI
(mg cm-1)
DVI
(mg cm-3)
BR
(g)
WP
(g cm)
M
(g cm)
早季 CPPC18 95.2 c 37.0 b 4.84 b 0.61 a 24.1 b 298.8 b 1196.5 b 960.7 c 1495.7 b
Early season XZX6 92.2 d 38.7 b 4.78 b 0.64 a 24.2 b 290.9 b 1045.8 c 1109.9 b 1307.2 c
ZX615 112.3 a 46.8 a 5.42 a 0.62 a 26.8 b 288.5 b 1319.3 b 1362.2 a 1649.2 b
ZZ39 105.6 b 44.9 a 5.61 a 0.65 a 35.1 a 345.6 a 1698.7 a 1433.5 a 2123.4 a
平均Mean 101.3 B 42.1 B 5.16 A 0.63 A 27.5 A 306.0 B 1315.1 A 1216.6 A 1643.8 A
晚季 CPPC18 98.7 c 41.3 c 4.66 b 0.56 bc 26.5 a 367.2 a 962.7 b 812.3 b 1203.4 b
Late season XZX6 94.5 d 42.3 c 4.45 b 0.54 c 24.9 a 372.2 a 894.6 b 797.5 b 1118.2 b
ZX615 113.8 a 48.8 a 5.14 a 0.60 ab 26.6 a 309.9 b 993.6 b 1183.5 b 1242.1 b
LY152 108.8 b 47.1 b 5.18 a 0.63 a 29.0 a 320.3 b 1391.8 a 1345.2 a 1739.8 a
平均Mean 104.0 A 44.9 A 4.86 B 0.58 B 26.7 A 342.4 A 1060.7 B 1034.6 B 1325.9 B

Fig. 6

Daily mean temperature and solar radiation during both early and late seasons (on-farm experiment) Daily mean temperature and solar radiation during growing season are from the website of the National Meteorological Information Center of the China Meteorological Administration."

Table 8

Growth duration of tested genotypes in the early and late seasons (on-farm experiment) (d)"

季节
Season
品种/品系
Genotype
营养生长期
Vegetative stage
生殖生长期
Reproductive stage
籽粒灌浆期
Ripening stage
全生育期
Total growth duration
早季 CPPC18 43 25 26 94
Early season XZX6 46 20 23 89
ZX615 45 24 29 98
ZZ39 47 26 28 101
晚季 CPPC18 30 18 41 89
Late season XZX6 29 19 37 85
ZX615 32 19 38 89
LY152 36 20 42 98

Table 9

Yield, daily yield, yield components, above-ground biomass at maturity, and harvest index of tested genotypes in the early and late seasons (on-farm experiment)"

季节
Season
品种/
品系
Genotype
产量
Yield
(t hm-2)
日产量
Daily yield
(kg hm-2 d-1)
单位面积
穗数
Panicles
(m-2)
每穗
颖花数
Spikelets
panicle-1
单位面积
颖花数
Spikelets
(×103 m-2)
结实率
Grain
filling
(%)
千粒重
1000-grain weight (g)
生物量
Biomass
(t hm-2)
收获指数
Harvest index
(%)
早季 CPPC18 5.54 ab 58.9 a 475 a 74.2 c 34.7 b 74.7 ab 20.7 c 11.8 ab 45.5 a
Early season XZX6 5.18 b 58.2 a 413 ab 76.0 c 31.4 b 78.6 a 19.0 d 9.9 b 47.3 a
ZX615 6.49 a 66.2 a 386 ab 92.5 b 35.3 b 70.3 bc 22.6 b 12.5 a 44.9 a
ZZ39 5.74 ab 56.9 a 305 b 132.9 a 40.3 a 62.7 c 24.4 a 13.3 a 46.3 a
平均Mean 5.74 A 60.0 B 395 A 93.9 A 35.4 A 71.6 A 21.7 B 11.9 A 46.0 B
晚季 CPPC18 7.36 a 82.7 a 339 ab 120.3 a 40.4 a 75.7 a 20.8 b 12.1 a 52.2 a
Late season XZX6 5.43 b 63.8 b 386 a 80.6 b 31.0 b 81.9 a 21.2 b 10.5 ab 51.2 a
ZX615 4.96 b 55.7 b 272 b 90.8 b 24.3 b 74.1 a 23.5 a 8.8 b 47.9 a
LY152 5.71 b 58.3 b 299 b 96.7 b 28.2 b 71.2 a 23.9 a 9.8 b 48.6 a
平均Mean 5.87 A 65.1 A 324 B 97.1 A 31.0 B 75.7 A 22.3 A 10.3 B 50.0 A

Table 10

Stem number and leaf area index at heading, and plant height at maturity of tested genotypes in the early and late seasons (on-farm experiment)"

季节
Season
品种/品系
Genotype
茎蘖数
Stem number (m-2)
叶面积指数
LAI
株高
Plant height (cm)
早季 CPPC18 1003 a 8.82 a 90.3 b
Early season XZX6 793 b 6.09 b 84.9 b
ZX615 781 b 6.04 b 103.2 a
ZZ39 791 b 5.66 b 100.6 a
平均Mean 842 A 6.65 A 94.7 A
晚季 CPPC18 523 a 5.96 a 95.3 b
Late season XZX6 579 a 5.77 a 90.4 b
ZX615 488 a 4.94 a 102.5 a
LY152 493 a 5.05 a 102.9 a
平均Mean 521 B 5.43 B 97.8 A
[1] Huang M, Zou Y. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Res, 2018, 224: 22-27.
doi: 10.1016/j.fcr.2018.05.001
[2] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China's rice production strategies during the transition period. Sci Sin, 2014, 44: 845-850. (in Chinese with English abstract)
[3] Ray D K, Foley J A. Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett, 2013, 8, 044041.
[4] 艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国. 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014, 40: 1320-1329.
doi: 10.3724/SP.J.1006.2014.01320
Ai Z Y, Guo X Y, Liu W X, Ma G H, Qing X G. Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agron Sin, 2014, 40: 1320-1329. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01320
[5] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[6] Yu X, Wang F, Xu L, Chen Z F, Yuan S, Wang X Y, Huang J L, Peng S B. Optimization of nitrogen management in both early and late seasons of direct-seeded double-season rice with an ultrashort-duration variety in central China. J Plant Growth Regul, 2023, 42: 3173-3183.
doi: 10.1007/s00344-022-10783-2
[7] Xu L, Zhan X W, Yu T T, Nie L X, Huang J L, Cui K H, Wang F, Li Y, Peng S B. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Res, 2018, 227: 49-55.
doi: 10.1016/j.fcr.2018.08.002
[8] Wang X Y, Yang G D, Xu L, Xiang H S, Yang C, Wang F, Peng S B. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in central China. J Integr Agric, 2023, 22: 1009-1020.
doi: 10.1016/j.jia.2022.08.019
[9] Chen J N, Huang M, Cao F B, Yin X H, Zou Y B. Availability of existing early-season rice cultivars as resources for selecting high-yielding short-duration cultivars of machine-transplanted late-season rice. Exp Agric, 2019, 56: 218-226.
doi: 10.1017/S0014479719000310
[10] Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Res, 1998, 57: 71-84.
doi: 10.1016/S0378-4290(98)00077-X
[11] Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res, 2011, 111: 87-98.
doi: 10.1016/j.still.2010.10.008
[12] Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38.
doi: 10.1016/j.fcr.2008.04.001
[13] Zhang J, Li G H, Song Y P, Liu Z H, Yang C D, Tang S, Zheng C Y, Wang S H, Ding Y F. Lodging resistance characteristics of high-yielding rice populations. Field Crops Res, 2014, 161: 64-74.
doi: 10.1016/j.fcr.2014.01.012
[14] 周国峰. 超级稻新组合在洞庭湖区的生产适应性比较研究. 湖南农业大学硕士学位论文, 湖南长沙, 2007.
Zhou G F. Comparative Study on the Adaptability of New Combinations of Super Hybrid Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2007. (in Chinese with English abstract)
[15] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 1-638.
Lu R K. Soil Agro-Chemistrical Analysis. Beijing: China Science and Technology Press, 2000. pp 1-638. (in Chinese)
[16] 李国辉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 何庭蕙. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理. 中国农业科学, 2013, 46: 1323-1334.
doi: 10.3864/j.issn.0578-1752.2013.07.003
Li G H, Zhong X H, Tian K, Huang N R, Pan J F, He T H. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Sci Agric Sin, 2013, 46: 1323-1334. (in Chinese with English abstract)
[17] Zhang W J, Wu L M, Ding Y F, Weng F, Wu X R, Li G H, Liu Z H, Tang S, Ding C Q, Wang S H. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. J Integr Agric, 2016, 15: 992-1004.
doi: 10.1016/S2095-3119(15)61166-2
[18] Xu L, Yuan S, Wang X Y, Chen Z F, Li X X, Cao J, Wang F, Huang J L, Peng S B. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort-duration varieties in central China. Crop J, 2022, 10: 515-523.
doi: 10.1016/j.cj.2021.07.003
[19] Wonprasaid S, Khunthasuvon S, Sittisuang P, Fukai S. Performance of contrasting rice cultivars selected for rainfed lowland conditions in relation to soil fertility and water availability. Field Crops Res, 1996, 47: 267-275.
doi: 10.1016/0378-4290(96)00013-5
[20] Tuong T P, Bhuiyan SI. Increasing water-use efficiency in rice production: farm level perspectives. Agric Water Manag, 1999, 40: 117-122.
doi: 10.1016/S0378-3774(98)00091-2
[21] Yuan S, Cassman K G, Huang J L, Peng S B, Grassini P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crops Res, 2019, 234: 66-72.
doi: 10.1016/j.fcr.2019.02.004
[22] Xu L, Yuan S, Wang X Y, Yang G D, Pan X C, Yu X, Wang F, Huang J L, Peng S B. Productivity and global warming potential of direct seeding and transplanting in double-season rice of central China. Food Energy Secur, 2022, 12, e419.
[23] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559.
doi: 10.2135/cropsci1999.3961552x
[24] 彭碧琳, 胡香玉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 梁开明, 刘彦卓, 傅友强. 华南双季直播稻品种筛选及其产量形成特征研究. 中国稻米, 2019, 25(5): 47-52.
doi: 10.3969/j.issn.1006-8082.2019.05.010
Peng B L, Hu X Y, Zhong X H, Tian K, Huang N R, Pan J F, Liang K L, Liu Y Z, Fu Y Q. Selection and yield formation characteristics of double-cropping and direct seeding rice in south China. China Rice, 2019, 25(5): 47-52. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2019.05.010
[25] 詹学武. 湖北地区双季稻直播种植模式研究. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Zhan X W. Study on Agronomic Performance of Direct Seeding in Double-season Rice in Hubei Province. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[26] Wang W X, Du J, Zhou Y Z, Zeng Y J, Tan X M, Pan X H, Shi Q H, Wu Z M, Zeng Y H. Effects of different mechanical direct seeding methods on grain yield and lodging resistance of early indica rice in South China. J Integr Agric, 2021, 20: 1204-1215.
doi: 10.1016/S2095-3119(20)63191-4
[27] 杨若珺. 湖南省水稻熟制变化与农民选择行为分析. 中国农业科学院硕士学位论文, 北京, 2013.
Yang R J. Analysis of farmer selection behaviors of rice cropping system in Hunan Province. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2013. (in Chinese with English abstract)
[28] 李勇, 杨林章, 殷广德. 太湖地区直播稻田氮素渗漏损失试验研究. 植物营养与肥料学报, 2010, 16: 99-104.
Li Y, Yang L Z, Yin G D. Experimental study on nitrogen leaching in a direct-seeding rice paddy of Taihu Lake Basin. Plant Nutr Fert Sci, 2010, 16: 99-104 (in Chinese with English abstract).
[29] 武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018, 24: 1416-1424.
Wu H L, Wang S C, Yan Z H, Huai S C, Ma C B, Xue Y D, Xu M G, Lu C A. Evolution characteristics of fertility paddy soil in China in recent 30 years. Plant Nutr Fert Sci, 2018, 24: 1416-1424. (in Chinese with English abstract)
[30] 滕祥勇, 王金明, 李鹏志, 林秀云, 孙强. 水稻抗倒伏性的影响因素及评价方法研究进展. 福建农业学报, 2021, 36: 1245-1254.
Teng X Y, Wang J M, Li P Z, Lin X Y, Sun Q. Advances on studies relating to lodging resistance of rice plant. Fujian J Agric Sci, 2021, 36: 1245-1254. (in Chinese with English abstract)
[31] 陆展华, 王晓飞, 刘维, 卢东柏, 王石光, 薛皦, 何秀英. 优质稻粤农丝苗抗倒伏影响因素和遗传分析. 植物遗传资源学报, 2021, 22: 638-645.
doi: 10.13430/j.cnki.jpgr.20200918003
Lu Z H, Wang X F, Liu W, Lu D B, Wang S G, Xue J, He X Y. Influencing factors and genetic analysis of lodging resistance of high-quality rice Yuenonog Simiao. J Plant Genet Resour, 2021, 22: 638-645. (in Chinese with English abstract)
[32] Zhang W J, Wu L M, Wu X R, Ding Y F, Li G H, Li J Y, Weng F, Liu Z H, Tang S, Ding C Q, Wang S H. Lodging resistance of japonica rice (Oryza sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 2016, 9: 31-41.
doi: 10.1186/s12284-016-0103-8
[33] 雷小龙, 刘利, 苟文, 马荣朝, 任万军. 种植方式对杂交籼稻植株抗倒伏特性的影响. 作物学报, 2013, 39: 1814-1825.
doi: 10.3724/SP.J.1006.2013.01814
Lei X L, Liu L, Gou W, Ma R C, Ren W J. Effect of planting methods on culm lodging resistance of indica hybrid rice (Oryza sativa L.). Acta Agron Sin, 2013, 39: 1814-1825. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01814
[34] Wang X Y, Xu L, Li X X, Yang G D, Wang F, Peng S B. Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded, double-season rice in central China. J Integr Agric, 2021, 21: 2888-2899.
doi: 10.1016/j.jia.2022.07.035
[35] 章清杞, 蔡来龙, 黄荣华, 程祖锌. 直播稻栽培技术研究进展. 亚热带农业研究, 2020, 16: 1-7.
Zhang Q Q, Cai L L, Huang R H, Cheng Z X. Research progress of direct seeding rice cultivation techniques. Subtrop Agric Res, 2020, 16: 1-7. (in Chinese with English abstract)
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[4] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[5] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[6] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[7] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[8] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[9] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[10] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[11] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[12] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[13] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[14] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[15] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .