欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1832-1842.doi: 10.3724/SP.J.1006.2010.01832

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析

彭勃1,王阳1,**,李永祥1,刘成2,刘志斋1,3,王迪1,谭巍巍1,张岩1,孙宝成2,石云素1,宋燕春1,王天宇1,*,黎裕1,*   

  1. 1中国农业科学院作物科学研究所,北京 100081;2新疆农业科学院粮食作物研究所,新疆乌鲁木齐 830000;3西南大学农学院,重庆400716
  • 收稿日期:2010-03-03 修回日期:2010-05-25 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 王天宇, E-mail: wangtianyu@263.net, Tel: 010-62186632; 黎裕, E-mail: yuli@mail.caas.net.cn, Tel: 010-62131196
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101700, 2009CB118401), 国家科技支撑计划项目(2006BAD13B03)和国家自然科学基金重点项目(30730063)资助。

QTL Analysis for Yield Components and Kernel-Related Traits in Maize under Different Water Regimes

PENG Bo1,WANG Yang1,**,LI Yong-Xiang1,LIU Cheng2,LIU Zhi-Zhai1,WANG Di1,TAN Wei-Wei1,ZHANG Yan1,SUN Bao-Cheng2,SHI Yun-Su1,SONG Yan-Chun1,WANG Tian-Yu1,*,LI Yu1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; 3 Southwest University, Chongqing 400716, China
  • Received:2010-03-03 Revised:2010-05-25 Published:2010-11-12 Published online:2010-08-30
  • Contact: WANG Tian-Yu,E-mail: wangtianyu@263.net, Tel: 010-62186632; 黎裕, E-mail: yuli@mail.caas.net.cn, Tel: 010-62131196

摘要: 干旱胁迫对玉米产量及其相关性状有重要影响。本研究以我国玉米育种骨干亲本齐319和掖478分别和黄早四组配构建的两个F2:3群体为材料,应用逐步联合分析的QTL定位方法,剖析新疆不同水分环境下(包含水区和旱区)玉米产量构成因子及籽粒相关性状的遗传基础。结果表明,在相同水分处理不同年份间产量构成因子和籽粒相关性状超过70%的QTL可稳定表达,旱区QTL的稳定性明显低于水区,当全部环境联合分析时,各性状QTL稳定性呈现一定程度的降低,但超过60%的QTL仍然稳定表达。两群体中共检测到11个环境钝感的主效QTL(在2个以上环境中检测到,且至少在一个环境下的贡献率大于10%),分布在bin1.10、2.00、4.09、7.02、9.02、10.04和10.07共7个基因组区段上,除bin10.04外所有环境钝感的主效QTL在全部环境下稳定表达。因此,玉米产量构成因子和籽粒相关性状的QTL在新疆相同水分处理不同年份间,甚至不同水分条件下大部分均可稳定表达,这些主效QTL位点可为抗旱分子育种和进一步精细定位提供参考。

关键词: 玉米, 干旱胁迫, 产量, 籽粒, QTL×环境互作

Abstract: Maize yield and yield-related traits are seriously affected by water stress. Therefore, detecting quantitative trait locus (QTL) for yield components and kernel-related traits, analyzing the stability of QTLs and exploiting constitutive QTLs under different water regimes are of great importance in marker-assisted breeding for drought tolerance in maize. In this study two F2:3 populations derived from Qi319×Huangzaosi (Q/H) and Ye478×Huangzaosi (Y/H) were used to investigate the genetic basis of yield components and kernel-related traits under different water regimes in Xinjiang (including well-water and water-stress environments) by stepwise joint QTL mapping method. The results showed that above 70% of the QTLs for yield components and kernel-related traits expressed stably under the same water regime across the two years. The QTLs detected in water-stress environments were less stable than those in well-water environments across the two years in Xinjiang. The joint analysis combining data of all environments indicated that the stability of the QTLs for all traits decreased, but above 60% of them still expressed stably. A total of 11 constitutive QTLs (with contribution rate more than10% in at least one environment, detected in more than two environments based on single environment analysis) distributed on bin1.10, 2.00, 4.09, 7.02, 9.02, 10.04 and 10.07 were detected in the two populations, and all of them except bin10.04 were stable across all environments. Consequently, most of the QTLs for yield components and kernel-related traits stably expressed under the same water regime across different years, and even under different water regimes in Xinjiang. These constitutive QTLs may provide references for molecular breeding and further basic studies.

Key words: Maize, Water stress, Yield, Kernel, QTL×E

[1]Ribaut J M, Jiang C, Gonzalet-de-Leon D, Edmeades G O, Hoisington D A. Identification of quantitative traits loci under drought conditions in tropical maize: II. Yield components and marker-assisted selection strategies. Theor Appl Genet, 1997, 94: 887–896
[2]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol A B, Saranga Y. Genomic dissection of drought resistance in durum wheat×wild emmer wheat recombinant inbreed line population. Plant Cell Environ, 2009, 32: 758–779
[3]Passioura J B. Environmental biology and crop improvement. Funct Plant Biol, 2002, 29: 537–546
[4]Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci, 2008, 48: 1649–1664
[5]Schaeffer M, Byrne P, Coe J E H. Consensus quantitative trait maps in maize: a database strategy. Maydica, 2006, 51: 357–367
[6]Veldboom L R, Lee M. Molecular marker-facilitated studies of morphological traits in maize: II. Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89: 451–458
[7]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environment: I. Grain yield and yield components. Crop Sci, 1996, 36: 1310–1319
[8]Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7–16
[9]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817–826
[10]Beavis W D, Smith O S, Grant D, Fincher R R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896
[11]Li Y-X(李永祥), Wang Y(王阳), Shi Y-S(石云素), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin (中国农业科学), 2009, 42 (2): 408–418(in Chinese with English abstract)
[12]Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut J M. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet, 2009, 119: 913–930
[13]Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding. Iowa: Iowa State University Press, 1981
[14]Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17: 53–57
[15]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[16]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468
[17]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536
[18]Malosetti M, Ribaut J M, Vargas M, Crossa J, van Eeuwijk F A. A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica, 2008, 161: 241–257
[19]Gao S-B(高世斌), Feng Z-L(冯质雷), Li W-C(李晚忱), Rong T-Z(荣廷昭). Mapping QTLs for root and yield under drought stress in maize. Acta Agron Sin (作物学报), 2005, 31(6): 718–722 (in Chinese with English abstract)
[20]Ribaut J-M, Hoisington D A, Deutsch J A, Jiang C, Gonzalez-de-Leon D. Identification of quantitative trait loci under drought conditions in tropical maize: 1. Flowering parameters and the anthesis silking interval. Theor Appl Genet, 1996, 92: 905–914
[21]Lu G H, Tang J H, Yan J B, Ma X Q, Li J S, Chen S J, Ma J C, Liu Z X, E L Z, Zhang Y R, Dai J R. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol, 2006, 48: 1233–1243
[22]Vargas M, van Eeuwijk F A, Crossa J, Ribaut J M. Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet, 2006, 112: 1009–1023
[23]Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116:243–260
[24]Melchinger A E, Utz H F, Schon C C. Quantitative Trait Locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149: 383–403
[25]Schön C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 34: 378–389
[26]Goldman I L, Rocheford T R, Dudley J W. Molecular markers associated with maize kernel oil concentration in an Illinois high protein x Illinois low protein cross. Crop Sci, 1994, 34: 908–915
[27]Goldman I L, Rocheford T R, Dudley J W. Quantitative trait loci influencing protein and starch concentration in the Illinois long term selection maize strains. Theor Appl Genet, 1993, 87: 217–224
[28]Ajmone-Marsan P, Monfredini G, Ludwig W F, Melchinger A E, Franceschini P, Pagnotto G, Motto M. Identification of genomic regions affecting plant height and their relationship with grain yield in an elite maize cross. Maydica, 1994, 39: 133–139
[29]Ajmone-Marsan P, Monfredini G, Ludwig W F, Melchinger A E, Franceschini P, Pagnotto G, Motto M. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet, 1995, 90: 415–424
[30]Ajmone-Marsan P, Mmonfredini G, Brandolini A, Melchinger A E, Garay G, Motto M. Identification of QTL for grain yield in an elite hybrid of maize: Repeatability of map position and effects in independent samples derived from the same population. Maydica, 1996, 41: 49–57
[31]Maccaferri M, Sanguineti M C, Corneti S, Ortega J L A, Salem M B, Bort J, DeAmbrogio E, Garcia del Moral L F, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 2008, 178: 489–511  
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[9] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[14] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!