欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1746-1753.doi: 10.3724/SP.J.1006.2013.01746

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

优良品系中品03-5373系谱的遗传解析及抗大豆胞囊线虫病相关标记鉴定

张姗姗1,**,李英慧1,**,李金英2,邱丽娟1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室,北京100081;2 河南省农业科学院经济作物研究所 / 国家大豆改良中心郑州分中心,河南郑州450002
  • 收稿日期:2013-01-28 修回日期:2013-05-11 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105843
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB125903)和国家自然科学基金项目(31171575)资助。

Genetic Dissection of Elite Line Zhongpin 03-5373 Pedigree and Identification of Candidate Markers Related to Resistance to Soybean Cyst Nematode

ZHANG Shan-Shan1,**,LI Ying-Hui1,**,LI Jin-Ying2,QIU Li-Juan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Germplasm Utilization, Agriculture of Ministry/ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Industrial Crops, Zhengzhou/ National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2013-01-28 Revised:2013-05-11 Published:2013-10-12 Published online:2013-08-01
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105843

摘要:

中品03-5373是高抗大豆胞囊线虫(soybean cyst nematode,SCN) 3号生理小种的优良大豆新种质,可追溯到10个祖先亲本,其中包括灰皮支黑豆、Peking和PI437654等国内外SCN主要抗源。本研究利用152个SSR标记对中品03-5373及其亲本进行鉴定,共发现等位变异437个,每个标记的等位变异范围为2~5个,平均为2.9个。亲缘关系分析表明11份材料间的遗传一致度变化范围为0.2430~0.8224,平均为0.458,4个SSR标记(Satt152、Satt179、Barcsoyssr_18_107和Satt196)形成的单倍型可以将11份材料区别开来。系谱追踪阐明了育种对基因组组成变化的作用,发现中品03-5373亲本中以灰皮支黑豆贡献的等位变异最多(39个),PI437654次之(6个)。通过系谱追踪筛选到与SCN 3抗性相关的候选标记20个,为进一步克隆抗病基因和选择有效的标记组合进行分子育种提供了依据。

关键词: 大豆, 胞囊线虫病, 系谱分析, 分子标记

Abstract:

Zhongpin 03-5373 with resistance to SCN3 is an elite soybean line, which is traced back to 10 parental lines. Three elite resistant sources (Huipizhiheidou, Peking and PI437654), diversely used in the soybean cyst nematode resistant breeding, were included in the pedigree of Zhongpin 03-5373. In this study, 152 molecular markers were selected to detect polymorphism among the 11 materials. A total of 437 alleles were identified with average of 2.9, ranging from two to five alleles on each locus. The average of Nei’s genetic identity among pairwise cultivars were 0.458, the haplotypes formed by four SSR markers (Satt152, Satt179, Barcsoyssr_18_107, and Satt196) could distinguish 11 cultivars in this study. Pedigree tracing elucidated genomic variation in breeding. IBD analysis showed that Huipizhiheidou contributed the most of specific alleles (39) to Zhongpin 03-5373 among three resistant genetic resources (Huipizhiheidou, Peking, and PI437654), followed by PI437654 (6). In addition, 20 markers identified were related to the resistance to SCN 3. These results supplied the information for further cloning resistant gene and resistant breeding by marker assistant selection.

Key words: Soybean, Soybean cyst nematode, Pedigree analysis, Molecular marker

[1]Lu W-G(卢为国), Gai J-Y(盖钧镒), Li W-D(李卫东). Sampling survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai Valleys. Sci Agric Sin (中国农业科学), 2006, 39(2): 306–312 (in Chinese with English abstract)



[2]Liu H-Q(刘汉起), Shang S-G(商绍刚), Huo H(霍虹), Wu H-L(吴和礼). Resistance of soybean varieties to race 1, 3 and 4 of soybean cyst nematode. Soybean Sci (大豆科学), 1989, 8(1): 113–114 (in Chinese)



[3]Liu W-Z(刘维志), Liu Y(刘晔), Chen P-S(陈品三). Preliminary report of identify the races of SCN in some city & county of Northeast. J Shenyang Agric Coll (沈阳农学院学报), 1984, (2): 74–78 (in Chinese)



[4]Zhang W-B(张闻博), Jiang H-W(蒋洪蔚), Li C-D(李灿东), Qiu P-C(邱鹏程), Qi Z-M(齐照明), Liu C-Y(刘春燕), Jiang W(姜威), Wang J(王晶), Hu G-H(胡国华), Chen Q-S(陈庆山). Integration of QTLs related to soybean cyst nematode resistance based on meta-analysis. Chin J Oil Crop Sci (中国油料作物学报), 2010, 32(1): 104–106 (in Chinese with English abstract)



[5]Liu G(刘刚), Lu S-X(鲁绍雄). Strategies for fine mapping of QTL with linkage disequilibrium. J Domestic Anim Ecol (家畜生态学报), 2006, 27(6): 187–201 (in Chinese)



[6]Russell J R, Ellis R P, Thomas W T B, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Yoang G, Powell W. A retrospective analysis of spring barley germplasm development from 'foundation genotypes' to currently successful cultivars. Mol Breed, 2000, 6: 553–568



[7]Guan R-X(关荣霞), Qin J(秦君), Hu J-S(胡静深), Chen W-X(陈为秀), Chang R-Z(常汝镇), Liu Z-X(刘章雄), Qiu L-J(邱丽娟). Genetic composition of elite soybean cultivar Hefeng 25. Acta Agron Sin (作物学报), 2009, 35(9): 1590–1596 (in Chinese with English abstract)



[8]Qin J, Yang R Q, Jiang C X, Li W B, Li Y H, Guan R X, Chang R Z, Qiu L J. Discovery and transmission of functional QTL in the pedigree of an elite soybean cultivar Suinong14. Plant Breed, 2010, 129: 235–242



[9]Liu Z-X(刘章雄), Lu W-G(卢为国), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Creation of new soybean SCN4-resistant lines. Soybean Sci (大豆科学), 2008, 17(6): 911–914 (in Chinese with English abstract)



[10]Liu P-Y(刘佩印). Advances in study of screening and utilization for antigen to soybean cyst nematode. Heilongjiang Agric Sci (黑龙江农业科学), 2005, (6): 44–47 (in Chinese with English abstract)



[11]Zhang G-D(张国栋). Advances in study of races of soybean cyst nematode and resistance of cultivars of soybean in America. Soybean Sci (大豆科学), 1994, 13(3): 252–260 (in Chinese)



[12]Anand S C. Registration of ‘Hartwig’ soybean. Crop Sci, 1992, 32: 1069–1070



[13]Li Y(李莹), Wang Z(王志), Li Y-P(李原萍). Research on germplasm resources of soybean in Shanxi Province. J Shanxi Agric Sci (山西农业科学), 2012, 40(7): 791–795 (in Chinese with English abstract)



[14]Liu Y-L(刘玉林). Constructing Genetic Linkage Map and Mapping QTLs for Agronomic Traits in Soybean. MS Thesis of Chinese Academy of Agricultural Sciences, 2011. pp 42–43 (in Chinese with English abstract)



[15]Li Y H, Marinus J M S, Chang R Z, Qiu L J. Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker. Conserv Genet, 2011, 12, 1145–1157



[16]Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci, 2004, 44: 1121–1131



[17]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregen P B. A new integrated genetic linkage map of the soybean. Theor App Genet, 2004, 109: 122–128



[18]Liu Y L, Li Y H, Zhou G A, Uzokwe N, Chang R Z, Chen S Y, Qiu L J. Development of soybean EST-SSR markers and their use to assess genetic diversity in the Subgenus Soja. Agric Sc: China, 2010, 9(10): 1423–1429



[19]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269–5273



[20]Zhai H-Q(翟虎渠), Wang J-K(王建康). Application of Quantitative Genetics (应用数量遗传学). Beijing: China Agriculture Science and Technology Press, 2007. pp 42–43 (in Chinese)



[21]Fernández M E, Figueiras A M, Benito C. The use of ISSR and RAPD markers for detecting DNA polymorphism genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet, 2002, 104: 845–851



[22]Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L) comparisons with data from RFLPs and pedigree. Theor App Genet, 1997, 95: 163–173



[23]Evans K M, Patocchi A, Rezzonico F, Mathis F, Durel C E, Fernández-Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Gianfranceschi L, Komjanc M, Lateur M, Madduri M, Noordijk Y, van de Weg W E. Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed, 2011, 28: 535–547



[24]William J H, David L H, Wayne W X, Daniel J G, Thomas J A, Todd R, Jeffrey A J, Jia G F, Nathan M S, Carroll P V, Robert M S. The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol, 2011, 155: 645–655



[25]Yuan C-P(袁翠平), Shen B(沈波), Dong Y-S(董英山). Released soybean varieties resistant to cyst nematode in China and their resistance genetic derivation. Soybean Sci (大豆科学), 2009, 28(6): 1049–1053 (in Chinese with English abstract)



[26]Lu W-G(卢为国), Li W-D(李卫东), Liang H-Z(梁惠珍), Wang S-F(王树峰), Sun S(孙慎). Progress of soybean cyst nematode gene mapping. J Henan Agricl Sci (河南农业科学), 2005, (11): 13–17 (in Chinese)



[27]Cregan P B, Mudge J, E W Fickus. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor App Gene, 1999, 99: 811–818



[28]Cook D E, Lee T G, Guo X L, Melito S, Wang K, Bayless A, Wang J P, Hughes T J, Willis D K, Clemente T, Diers B W, Jiang J M, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in Soybean. Science, 2012, 338: 1206–1209



[29]Chang W(常玮), Hang Y-P(韩英鹏), Hu H-B(胡海波), Li W-B(李文滨). Mining candidate genes for resistance to soybean cyst nematode based on meta-analysis and domains annotations. Sci Agric Sin (中国农业科学), 2010, 43(23): 4787–4795 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!