欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1891-1898.doi: 10.3724/SP.J.1006.2013.01891

• 研究简报 • 上一篇    下一篇

玉米/大豆和玉米/甘薯模式下玉米磷素吸收特征及种间相互作用

邓小燕1,王小春1,*,杨文钰1,*,宋春1,文熙宸1,张群1,毛树明2   

  1. 1四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室,四川温江 611130; 2仁寿县农业局,四川仁寿 620500
  • 收稿日期:2013-01-31 修回日期:2013-05-24 出版日期:2013-10-12 网络出版日期:2013-07-31
  • 通讯作者: 王小春, E-mail: xchwang@sicau.edu.cn; 杨文钰, E-mail: wenyu.yang@263.net
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201103001), 国家自然科学基金青年科学基金项目(31201169), 四川省育种攻关项目(2011NZ0098-15-2),四川玉米单季稻大面积均衡增产技术集成研究与示范项目(2012BAD04B13-2)和四川农业大学研究生创新基金资助。

Phosphorus Uptake and Utilization of Maize and Interspecies Interactions in Maize/Soybean and Maize/Sweet Potato Relay Intercropping Systems

DENG Xiao-Yan1,WANG Xiao-Chun1,*,YANG Wen-Yu1,*,SONG Chun1,WEN Xi-Chen1,ZHANG Qun1,MAO Shu-Ming2   

  1. 1 Agronomy College of Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of P.R. China, Wenjiang 611130, China; 2 Renshou Bureau of Agriculture, Renshou 620500,China
  • Received:2013-01-31 Revised:2013-05-24 Published:2013-10-12 Published online:2013-07-31
  • Contact: 王小春, E-mail: xchwang@sicau.edu.cn; 杨文钰, E-mail: wenyu.yang@263.net

摘要:

采用根系分隔盆栽试验和田间小区试验相结合的方法,通过研究玉米/大豆和玉米/甘薯套作模式下不同分隔方式及不同供磷水平,即03570105140 kg P2O5 hm-2对玉米磷素吸收利用的影响,阐明两种套作模式下种间相互作用及玉米磷素吸收特性。结果表明,2种套作体系中无论施磷与否,玉米均表现出套作优势(Acs>0NCRcs>1),且玉米在玉米/大豆套作模式中的竞争能力强于玉米/甘薯模式,大豆和甘薯处于套作劣势,两种模式均促进了玉米磷素积累和产量的提高,施磷70 kg hm-2时,与根系分隔相比,不分隔时玉米磷素积累和产量在玉米/大豆、玉米/甘薯中分别提高了17.05%5.62%16.84%7.17%,磷素当季利用率平均提高了7.81%。种植模式和施磷水平互作效应显著,两种模式均以105 kg hm-2处理玉米茎、叶和穗磷素积累和产量较高,且玉米/大豆套作大于玉米/甘薯套作,说明玉米/大豆模式更有利于玉米磷素的积累及产量的提高。

关键词: 玉米/大豆, 玉米/甘薯, 玉米, 磷素积累, 利用效率

Abstract:

A field experiment with different phosphorus (P) application amount including 0, 35, 70, 105, 140 kg P2O5 ha-1 and a root barrier pot experiment with no barrier and plastic barrier were conducted to study the effects of P nutrition on P accumulation and use efficiency of maize in maize/soybean and maize/sweet potato relay intercropping systems along with their inter-specific promotion and mechanism. A pot experiment with and without barrier was conducted to find the inter-specific interactions, when root was separated by plastic barrier, there were not any inter-specific interactions but only P fertilizer effects, when root was not separated, there existed inter-specific interactions and P fertilizer effects at the same time. Results showed that, whether applicating P fertilizer or not, P accumulation of soybean and sweet potato was restrained in no-barrier treatment, but alleviating P application increasing (Acs>0, NCRcs>1). Inter-specific interactions promoted P accumulation by 17.05% and 5.62%, and yield by 16.84% and 7.17% respectively, when P application amount was 70 kg ha-1; the promoting effects were more obvious with P application. Inter-specific interactions promoted P use efficiency by 7.81%, and P utilization efficiency was higher in maize/soybean than in maize/sweet potato. P accumulation of stems, leaves and grains and maize yield increased with increasing P fertilizer when P application was less than 105 kg P2O5 ha-1, it was opposite while P application was more than 105 kg P2O5 ha-1. P accumulation and yield were significantly higher in maize/soybean intercropping system than in maize/sweet potato intercropping. Intercropping systems-phosphorus application interaction was extremely significant. The results were similar in both field experiment and pot experiment. Therefore increasing the application of P fertilizer and using intercropping are both helpful to improve P accumulation and yield. Compared with maize/sweet potato, maize/soybean is better for promoting P use efficiency.

Key words: Maize/soybean, Maize/sweet potato, Maize, Phosphorus accumulation, Use efficiency

[1]Yang W-Y(杨文钰). The main mode of science and technology project of high yield grain production in Sichuan Province. Sichuan Agric Sci Technol (四川农业科技), 2010, (10): 18–19 (in Chinese)



[2]Yong T-W(雍太文), Yang W-Y(杨文钰), Xiang D-B(向大兵), Chen X-R(陈小蓉), Wan Y(万燕). Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Pratacult Sin (草业学报), 2012, 21(1): 50–58 (in Chinese with English abstract)



[3]Wang X-C(王小春), Yang W-Y(杨文钰), Ren W-J(任万军), Deng X-Y(邓小燕), Zhang Q(张群). Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Plant Nutr Fert Sci (植物营养与肥料学报), 2012, 18(4): 803–812 (in Chinese with English abstract)



[4]Yong T-W(雍太文), Yang W-Y(杨文钰), Xiang D-B(向大兵), Wan Y(万燕), Liu W-G(刘卫国), Wang X-C(王小春). Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on soil nitrogen content and nitrogen transfer. Acta Agron Sin (作物学报), 2012, 38(1): 148–158 (in Chinese with English abstract)



[5]Zhang F-S(张福锁), Wang J-Q(王激清), Zhang W-F(张卫峰), Cui Z-L(崔振岭), Ma W-Q(马文奇), Chen X-P(陈新平), Jiang R-F(江荣风). Nutrient use efficiencies of major cereal crops in china and measures for improvement. Acta Pedol Sin (土壤学报), 2008, 45(5): 915–924 (in Chinese with English abstract)



[6]Liu J-L(刘建玲), Zhang F-S(张福锁). Dynamics of soil P pool in a long-term fertilizing experiment of wheat-maize rotation: I. Crop yield effect of fertilizer P and dynamics of soil total P and inorganic P. Chin J Appl Ecol (应用生态学报), 2000, 11(3): 360–364 (in Chinese with English abstract)



[7]Ramaekers L, Remans R, Rao I M, Blair M W, Vanderleyden J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res, 2010, 117: 169–176



[8]Zhang J-H(张吉海). A preliminary study on tolerance of different maize genotype under low-phosphorus stress. MsD Sichuan Agricultural University (四川农业大学), 2006 (in Chinese with English abstract)



[9]Li Y-S(李银水), Lu J-W(鲁剑巍), Liao X(廖星), Zou J(邹娟), Li X-K(李小坤), Yu C-B(余常兵), Ma C-B(马常宝), Gao X-Z(高祥照). Effects of phosphorus application rate on yield and fertilizer-phosphorus utilization efficiency in rapeseed. Chin J Oil Crop Sci (中国油料作物学报), 2011, 33(1): 52–56 (in Chinese with English abstract)



[10]Chen L(陈璐), Dang T-H(党廷辉), Qi R-S(戚瑞生). Dynamics of phosphorus accumulation and utilization efficiency of winter wheat on dry highlands of loess plateau. Bull Soil Water Conserv (水土保持通报), 2011, 31(3): 190–193 (in Chinese with English abstract)



[11]Zhang Y-J(张亚洁), Hua J-J(华晶晶), Li Y-C(李亚超), Chen Y-Y(陈莹莹), Yang J-C(杨建昌). Effects of interaction between phosphorus nutrition and cultivation methods on grain yield and phosphorus utilization of upland rice and paddy rice. Acta Agron Sin (作物学报), 2011, 37(8): 1423–1431 (in Chinese with English abstract)



[12]Liu J-L(刘建玲), Li R-G(李仁岗), Liao W-H(廖文华), Gia K(贾可), Meng N(孟娜), Cui Z(崔哲). The yield response of vegetable to phosphorus fertilizer and soil phosphorus accumulation in a Chinese cabbage-capsicum rotation. Sci Agric Sin (中国农业科学), 2005, 38(8): 1616–1620 (in Chinese with English abstract)



[13]Costa S E V G A, Souza E D, Anghinoni I, Flores J P C, Vieira F C B, Martins A P, Ferreira E V O. Patterns in phosphorus and corn root distribution and yield in long-term tillage systems with fertilizer application. Soil Till Res, 2010, 109: 41–49



[14]Kang L-Y(康利允), Li S-Q(李世清). Influence of water supply and phosphorus application in different depth on growth and water use efficiency of winter wheat. Sci Agric Sin (中国农业科学), 2012, 45(1): 85–92 (in Chinese with English abstract)



[15]Ma Y B, Li J M, Li X Y, Tang X, Liang Y C, Huang S M, Wang B R, Liu H, Yang X Y. Phosphorus accumulation and depletion in soils in wheat-maize cropping systems: Modeling and validation. Field Crops Res, 2009, 110: 207–212



[16]Zhang Y-J(张亚洁), Yang J-C(杨建昌), Du B(杜斌). Effects of cultivation methods on the absorption and use efficiency of phosphorus in upland rice and paddy rice. Acta Agron Sin (作物学报), 2008, 34(1): 126–132 (in Chinese with English abstract)



[17]Yong T-W(雍太文), Chen X-R(陈小容), Yang W-Y(杨文钰), Xiang D-B(向达兵), Fan G-Q(樊高琼). Root exudates and nitrogen uptake of wheat in wheat/maize/soybean relay cropping system. Acta Agron Sin (作物学报), 2010, 36(3): 477–485 (in Chinese with English abstract)



[18]Yong T-W(雍太文), Yang W-Y(杨文钰), Wang X-C(王小春), Fan G-Q(樊高琼). Nitrogen uptake and utilization and interspecies reciprocity in the two relay-planting systems. J Sichuan Agric Univ (四川农业大学学报), 2009, 27(2): 168–172 (in Chinese with English abstract)



[19]Li L(李隆), Yang S-C(杨思存), Sun J-H(孙建好), Li X-L(李晓林), Zhang F-S(张福锁). Dynamic of nitrogen, phosphorus and potassium uptake by intercropped species in the spring wheat/soybean intercropping. Plant Nutr Fert Sci (植物营养与肥料学报), 1999, 5(2): 163–171 (in Chinese with English abstract)



[20]Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol Biochem, 2012, 46: 181–190



[21]Mei P P, Gui L G, Wang P, Huang J C, Long H Y, Christie P, Li L. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Res, 2012, 130: 19–27



[22]Gao Y, Duan A W, Qiu A Q, Liu Z G, Sun J S, Zhang J P, Wang H Z. Distribution of root and root length density in a maize/soybean strip intercropping system. Agr Water Manage, 2010, 98: 199–212



[23]Liu K-C(刘开昌), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Li A-Q(李爱芹). Characteristic of phosphorus absorption of high oil maize and effects of phosphor on its kernel quality. Acta Agron Sin (作物学报), 2001, 27(2): 267–272 (in Chinese with English abstract)



[24]Yu C-B(余常兵), Sun J-H(孙建好), Li L(李隆). Effects of interspecific interaction on crop growth nutrition accumulation. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(1): 1–8 (in Chinese with English abstract)



[25]Jiao N-Y(焦念元), Ning T-Y(宁堂原), Zhao C(赵春), Hou L-T(侯连涛), Li Z-J(李增嘉), Li Y-J(李友军), Fu G-Z(付国占), Han B(韩宾). Effects of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system. Acta Agron Sin (作物学报), 2008, 34(4): 706–712 (in Chinese with English abstract)



[26]Tang X, Li J M, Ma Y B, Hao X Y, Li X Y. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions. Field Crops Res, 2008, 108: 231–237

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!