欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1776-1786.doi: 10.3724/SP.J.1006.2014.01776

• 耕作栽培·生理生化 • 上一篇    下一篇

基于Richards扩展方程提取水稻灌浆结实光温特性参数

杨沈斌1,2,江晓东2,王应平3,申双和1,石春林4,王萌萌2,陈斐2   

  1. 1南京信息工程大学气象灾害预报预警与评估协同创新中心 / 江苏省农业气象重点实验室,江苏南京 210044; 2南京信息工程大学应用气象学院,江苏南京 210044; 3 CSIRO Marine and Atmospheric Research, PMB # 1, Aspendale, Victoria 3195, Australia; 4江苏省农业科学院,江苏南京 210014
  • 收稿日期:2014-04-09 修回日期:2014-07-06 出版日期:2014-10-12 网络出版日期:2014-07-23
  • 基金资助:

    本研究由国家公益性行业(气象)科研专项(GYHY201306035, GYHY201306036, GYHY201206020), “十二五”国家科技支撑计划项目(2011BAD32B01)和江苏高校优势学科建设工程项目(PAPD)资助。

Charactering Light and Temperature Effects on Rice Grain Filling Using Extended Richards Equation

YANG Shen-Bin1,2,JIANG Xiao-Dong2,WANG Ying-Ping3,SHEN Shuang-He1,SHI Chun-Lin4,WANG Meng-Meng2,CHEN Fei2   

  1. 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters / Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3 CSIRO Marine and Atmospheric Research, PMB # 1, Aspendale, Victoria 3195, Australia; 4 Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-04-09 Revised:2014-07-06 Published:2014-10-12 Published online:2014-07-23

摘要:

以籼型两系杂交稻陵两优268和两优培九为材料,进行了为期两年(20122013)的大田分期播种试验,每年分7期播种,旨在研究水稻灌浆期光温要素对籽粒灌浆结实的影响,并提取与此有关的光温特性参数。因此,以Richards方程拟合观测数据得到的平均灌浆速率为纽带,通过引入光温订正方程,建立Richards扩展方程。结合全局优化算法SCE-UA (Shuffled Complex Evolution Algorithm),优化方程参数,估算2个品种灌浆结实的光温特征参数和响应曲线。结果显示,光照主要通过影响籽粒最终重量而间接作用于平均灌浆速率,温度则通过影响灌浆进程的快慢作用于平均灌浆速率。陵两优268灌浆结实期的光照阈值(R0)、最低(Tmin)、最高(Tmax)和最适温度(Top)分别为18.94 MJ m-2 d-16.8130.2833.29; 两优培九上述参数分别为21.71 MJ m-2 d-16.1024.1633.74。形成的光照和温度响应曲线,能够较好地反映两品种平均灌浆速率对光温条件的响应差异,其中陵两优268平均灌浆速率表现为温度敏感型,而两优培九表现为光照敏感型。本文运用数学模型方法定量分析和比较了光温要素对有效灌浆期内平均灌浆速率的影响,其方法和结论为建立相应的农业气象指标,评估气候资源对水稻产量的影响提供了重要参考依据。

关键词: 水稻, 灌浆结实期, 光温环境, 数学模型, 参数优化

Abstract:

Richards equation has been widely used to simulate rice grain filling rates, but the lack of capability to relate environmental factors in its simulation impedes the application of Richards equation in evaluating the impact of adverse climate on grain filling process. Therefore, a mathematical modeling method, together with two-year filed-seeding experiment (2012–2013) data, was used in this paper to examine the feasibility of an extended Richards equation on this issue. The two-year experiment was carried out in Nanjing with two indica two-line hybrid rice cultivars, Lingliangyou 268 and Liangyoupeijiu. On the basis of the observations, Richards equation was first used to estimate rice grain filling parameters and calculate mean grain filling rate in each effective grain filling period. Subsequently, a radiation and temperature correction function was introduced into the Richards equation to form an extended equation by linking the mean grain filling rates to daily radiation and mean temperature observations. A set of radiation and temperature characteristic parameters were included in the correction function, which theoretically reflect the response of mean grain filling rates to the change of temperature and radiation conditions and form response curves for the two tested varieties. To estimate these parameters, we applied the Shuffled Complex Evolution (SCE-UA) global optimization algorithm in this paper, since the extended equation was highly nonlinear. Statistical methods were also applied to analyze the relations between retrieved rice grain filling parameters and climatic factors. The results showed that insufficient sun radiation had an indirect and negative effect on mean grain filling rate by imposing an adverse influence on CO2 assimilation. Daily mean temperature mainly showed an evident effect on mean grain filling rate which could be accelerated under high temperatures or slow down at adverse low temperatures, but it also had a great influence on CO2 assimilation as well as the accumulation of assimilation products in grains. The estimated critical radiation and critical temperatures for Lingliangyou 268 were 18.94 MJ m-2 d-1, 6.81°C, 30.28°C, 33.29°C, respectively, and 21.71 MJ m-2 d-1, 6.10°C, 24.16°C, and 33.74°C for Liangyoupeijiu, which demonstrate an evident difference between the two varieties. Quantitative analyses based on the temperature and radiation response curves showed that the correction coefficients for rice seeding dates in May in 2012 for both rice varieties were generally higher than that of other seeding dates, which implies that the time of seeding is critical to grain filling and yield formation. In addition, Lingliangyou 268 exhibited stronger temperature sensitivity in grain filling period, which means that the mean grain filling rate is more sensitive to the temperature change than to the radiation variation. In comparison, Liangyoupeijiu represented greater radiation sensitivity in grain filling, which indicates that this cultivar can be greatly influenced by insufficient radiation during the grain filling stage. On the whole, the mathematical model presented successfully retrieved the critical parameters representing the effects of daily mean temperature and radiation on mean grain filling rates from field observations. Although more validations are expected to examine the reliability and effectiveness of the proposed method, it can be an important reference for developing agro-meteorological indexes for monitoring and evaluating the effects of meteorological factors on rice grain filling as well as on yield formation.

Key words: Rice, Grain filling, Light-temperature, Mathematical model, Parameter optimization

[1]Hay R, Porter J. The Physiology of Crop Yield, 2nd edn. Oxford: Blackwell Publishing Ltd, 2006. pp 145–164



[2]曹卫星. 作物栽培学总论(第2版). 北京: 科学出版社, 2011. pp 67–86



Cao W X. General Crop Cultivation Science, 2nd edn. Beijing: Science Press, 2011. pp 67–86 (in Chinese)



[3]Yoshida S. Fundamentals of Rice Crop Science. Los Banos: International Rice Research Institute, 1981. pp 58–60



[4]郑志广. 光温条件对水稻结实及干物质生产的影响. 北京农学院学报, 2003, 18(1): 13–16



Zheng Z G. The Influence of temperature and light on grain-filling and dry matter production of rice. J Beijing Univ Agric, 2003, 18(1):13–16 (in Chinese with English abstract)



[5]符冠富, 王丹英, 李 华, 陶龙兴, 章秀福. 水稻不同生育期温光条件对籽粒充实和米质的影响. 中国农业气象, 2009, 30: 375–382



Fu G K, Wang D Y, Li H, Tao L X, Zhang X F. Influence of temperature and sunlight conditions on rice grain filling and quality in different growth stages. Chin J Agrometeorol, 2009, 30: 375–382 (in Chinese with English abstract)



[6]陶炳炎, 汤志成, 彭钊安, 张定琪. 杂交水稻与气象. 南京: 江苏科学技术出版社, 1983. pp 52–54



Tao B Y, Tang Z C, Peng Z A, Zhang D Q. Hybrid Rice and Meteorology. Nanjing: Jiangsu Science and Technology Publishing House, 1983. pp 52–54 (in Chinese with English abstract)



[7]Yao F M, Xu Y L, Lin E D, Yokozawa M, Zhang J H. Assessing the impacts of climate change on rice yields in the main rice areas of China. Climat Change, 2007, 80:395–409



[8]Sun W, Huang Y. Global warming over the period 1961–2008 did not increase high-temperature stress, but did reduce low-temperature stress in irrigated rice across China. Agric For Meteorol, 2011, 151: 1193–1201



[9]Tao F L, Yokozawa M, Liu J Y, Zhang Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Res, 2008, 38: 83–94



[10]杨沈斌, 申双和, 赵小艳, 赵艳霞, 许吟隆, 王主玉, 刘娟, 张玮玮. 气候变化对长江中下游稻区水稻产量的影响. 作物学报, 2010, 36: 1519–1528



Yang S B, Shen S H, Zhao X Y, Zhao Y X, Xu Y L, Wang Z Y, Liu J, Zhang W W. Impact of climate change on rice production in the middle and lower reaches of the Yangtze River. Acta Agron Sin, 2010, 36: 1519–1528 (in Chinese with English abstract)



[11]任万军, 杨文钰, 樊高琼, 朱雪梅, 马周华, 徐精文. 始穗后弱光对水稻干物质积累与产量的影响. 四川农业大学学报, 2003, 21: 292–296



Ren W J, Yang W Y, Fan G Q, Zhu X M, Ma Z H, Xu J W. Effect of low light on dry matter accumulation and yield of rice. J Sichuan Agric Univ, 2003, 21: 292–296 (in Chinese with English abstract)



[12]姜楠. 遮光对北方粳稻产量和品质的形成及其生理机制的研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2013



Jiang N. Effect of Shading on the Yield and Quality of Japonica Rice from Northern China and its Underlying Physiological Mechanism. Ph.D. Dissertation of Shenyang Agricultural University, Shenyang, China, 2013 (in Chinese with English abstract)



[13]任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785–790



Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of low light on grain growth and quality in rice. Acta Agron Sin, 2003, 29: 785–790 (in Chinese with English abstract)



[14]熊杰, 符冠富, 宋建, 乐明凯, 宋祥甫, 陶龙兴. 植物生长调节物质对灌浆期遮光水稻生长及结实的影响. 中国稻米, 2010, 16(6): 9–13



Xiong J, Fu G F, Song J, Le H K, Song X P, Tao L X. Effects of plant growth regulators on growth and grain setting rate in shading-treated rice at the booting stage. China Rice, 2010, 16(6): 9–13 (in Chinese with English abstract)



[15]邓飞, 王丽, 姚雄, 王建军, 任万军, 杨文钰. 不同生育阶段遮阴对水稻籽粒充实和产量的影响. 生态学杂志, 2009, 38: 265–269



Deng F, Wang L, Yao X, Wang J J, Ren W J, Yang W Y. Effects of different growing-stage shading on rice grain-filling and yield. Chin J Ecol, 2009, 38: 265–269 (in Chinese with English abstract)



[16]Thangaraj M, Sivasubram A V. Effects of low light intensity on growth and productivity of irrigated rice (Oryza sativa L.) grown in the Cauvery delta region. Madras Agric J, 1990, 77: 220–224



[17]Samarajeewa K B D P, Kojima N, Sakagami J I, Chandanie W A. The effect of different timing of top dressing of nitrogen application under low light intensity on the yield of rice (Oryza sativa L.). J Agron Crop Sci, 2005, 191: 99–105



[18]Tanaka K, Onishi R, Miyazaki M, Ishibashi Y, Yuasa T, Iwaya-Inoue M. Changes in NMR relaxation of rice grains, kernel quality and physicochemical properties in response to a high temperature after flowering in heat-tolerant and heat-sensitive rice cultivars. Plant Product Sci, 2009, 12: 185–192



[19]Yan C, Ding Y F, Liu Z H, Wang Q S, Li G H, He Y, Wang S H. Temperature difference between the air and organs of rice plants and its relationship to spikelet fertility. Agric Sci China, 2008, 7: 678–685



[20]马宝, 高温对水稻光合特征、生长发育和产量的影响. 中国农业科学院硕士学位论文, 北京, 2009



Ma B. Effect of High Temperature on Photosynthetic Characteristics, Growth and Development, and Rice Yield. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2009 (in Chinese with English abstract)



[21]曹云英, 高温对水稻产量与品质的影响及其生理机制. 扬州大学博士学位论文, 江苏扬州, 2009



Cao Y Y. The Impact of High Temperature on Rice Grain Yield and Quality and the Underlying Physiological Mechanism. PhD. Dissertation of Yangzhou University, Yangzhou, China, 2009 (in Chinese with English abstract)



[22]龚金龙, 张洪程, 胡雅杰, 龙厚元, 常勇, 王艳, 邢志鹏, 霍中洋. 灌浆结实期温度对水稻产量和品质形成的影响. 生态学杂志, 2013, 32: 482–491



Gong J L, Zhang H C, Hu Y J, Long H Y, Chang Y, Wang Y, Xing Z P, Hou Z Y. Effects of air temperature during the rice grain-filling period on the formation of rice grain yield and its quality. Chin J Ecol, 2013, 32: 482–491 (in Chinese with English abstract)



[23]Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975



[24]李健陵, 张晓艳, 杜尧东, 王华, 吴丽姬, 胡飞. 高温对抽穗开花期至灌浆结实期水稻源库特性的影响. 中国农业气象, 2013, 34: 23–29



Li J L, Zhang X Y, Du Y D, Wang H, Wu L J, Hu F. Effects of high temperature on rice source-sink characteristics during the heading stage to grain-filling stage. Chin J Agrometeorol, 2013, 34: 23–29 (in Chinese with English abstract)



[25]盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21: 396–402



Sheng J, Tao H J, Chen L G. Response of seed-setting and grain quality of rice to temperature at different times during the grain-filling period. Chin J Rice Sci, 2007, 21: 396–402 (in Chinese with English abstract)



[26]Tashiro T, Wardlaw I F. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Aust J Plant Physiol, 1991, 18: 259–265



[27]Kobata T, Uemuki N. High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agron J, 2004, 96: 406–414



[28]李平, 王以柔, 陈贻竹, 刘鸿先. 低温对杂交稻乳熟期剑叶光合作用和光合产物运输的影响. 植物学报, 1994, 36: 45–52



Li P, Wang Y R, Chen Y Z, Liu H X. The effect of low temperature on photosynthesis of flag leaf and transport of photosynthetic products during the milk stage of hybrid rice. Acta Bot Sin, 1994, 36: 45–52 (in Chinese with English abstract)



[29]袁继超, 刘从军, 朱庆森, 李俊青, 杨建昌. 播期对水稻籽粒灌浆特性的影响. 西南农业学报, 2004, 17(2): 164–168



Yuan J C, Liu C J, Zhu Q S, Li J Q, Yang J C. Effects of sowing date on grain-filling properties of rice. Southwest China J Agric Sci, 2004, 17(2): 164–168 (in Chinese with English abstract)



[30]朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182–192



Zhu Q S, Cao X Z, Luo Y Q. Growth analysis of the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182–192 (in Chinese with English abstract)



[31]Yang W, Peng S B, Dionisio-Sese M L, Laza R C, Visperas R M. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res, 2008, 105: 221–227



[32]顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001, 27: 7–14



Gu S L, Zhu Q S, Yang J C, Peng S B. Analysis of grain filling characteristics for different rice types. Acta Agron Sin, 2001, 27: 7–14 (in Chinese with English abstract)



[33]Yu Q, Liu J D, Zhang Y Q, Li J. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. Int J Biometeorol, 2002, 46: 185–191



[34]Yin X Y, Kropff M J, McLaren G, Visperas R M. A nonlinear model for crop development as a function of temperature. Agric For Meteorol, 1995, 77: 1–16



[35]Yin X Y, Kropff M J, Horie T, Nakagawa H, Centeno H G S, Zhu D, Goudriaan J. A model for photothermal responses of flowering in rice: I. Model description and parameterization. Field Crops Res, 1997, 51: 189–200



[36]Ceglar A, Crepinsek Z, Kajfez-Bogataj L, Pogacar T. The simulation of phenological development in dynamic crop model: the Bayesian comparison of different methods. Agric For Meteorol, 2011, 151: 101–115



[37]van Oort P A J, Zhang T Y, de Vries M E, Heinemann A B, Meinke H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric For Meteorol, 2011, 151: 1545–1555



[38]Duan Q Y, Gupta V K, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization. J Optimiz Theor Appl, 1993, 76: 501–521



[39]Shen S H, Yang S B, Li B B, Tan B X, Li Z Y, Le Toan T. A scheme for regional rice yield estimation using ENVISAT ASAR data. Sci China Ser D: Earth Sci, 2009, 52: 1183–1194



[40]Duan Q Y, Sorooshian S, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating Watershed Models. J Hydrol, 1994, 158: 265–284



[41]李致家, 周轶, 哈布•哈其. 新安江模型参数全局优化研究. 河海大学学报(自然科学版), 2004, 32: 376–379



Li Z J, Zhou Y, Habu H. Application of global optimization to calibration of the Xin’anjiang model. J Hohai Univ (Natl Sci), 2004, 32: 376–379 (in Chinese with English abstract)



[42]Kima J, Shona J Y, Leea C K, Yangb W H, Yoona Y H, Yanga W H, Kima Y G, Leec B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res, 2011, 122: 207–213



[43]邹江石, 吕川根, 王才林, 郑克武, 宗寿余, 赵凌, 孙永华. 两系杂交稻“两优培九”的选育及其栽培特性. 中国农业科学, 2003, 36: 869–872



Zhou J S, Lü C G, Wang C L, Zheng K W, Zong S Y, Zhao L, Sun Y H. Breeding of two-line hybrid rice variety "Liangyoupeijiu" and preliminary studies of its cultivation characteristics. Sci Agric Sin, 2003, 36: 869–872 (in Chinese with English abstract)



[44]赵海燕, 姚凤梅, 张勇, 徐宾, 袁静, 胡亚南, 许吟隆. 长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析. 中国农业科学, 2006, 39: 1765–1771



Zhao H Y, Yao F M, Zhang Y, Xu B, Yuan J, Hu Y N, Xu Y L. Correlation analysis of rice seed setting rate and 1000-grain weight and agro-meteorology over the middle and lower reaches of the Yangtze River. Sci Agric Sin, 2006, 39: 1765–1771 (in Chinese with English abstract)



[45]谭中和, 蓝泰源, 任昌福, 方文. 杂交籼稻开花期高温危害及对策研究. 作物学报, 1985, 11: 103–108



Tan Z H, Lan T Y, Ren C F, Fang W. Damage from high temperatures on Indica hybrid rice at the flowering stage and its countermeasures. Acta Agron Sin, 1985, 11: 103–108 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!