欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3065-3079.doi: 10.3724/SP.J.1006.2025.51036

• 耕作栽培·生理生化 • 上一篇    下一篇

深松耕作条件下滴灌对冬小麦花后干物质积累及灌浆特性的影响

张妍妍1,2,李迎1,2,刘栩辰1,黄超1,2,吕佳宁1,2,周海佳1,3,马守田1,2,秦安振1,2,高子乐4,吴光辉4,陈丹4,姬夏楠4,刘战东1,2,*   

  1. 1 中国农业科学院农田灌溉研究所, 河南新乡 453003; 2 中国农业科学院西部农业研究中心, 新疆昌吉 831100; 3.河南科技学院农学院, 河南新乡 453003; 4河南省豫东水利保障中心, 河南开封 475000
  • 收稿日期:2025-04-06 修回日期:2025-07-09 接受日期:2025-07-09 出版日期:2025-11-12 网络出版日期:2025-07-16
  • 基金资助:

    本研究由国家科技基础资源调查专项(2022FY101601), 中国农业科学院科技创新工程项目(ASTIP)和河南省2022年水利科技攻关项目(GG202247)资助。

Effects of drip irrigation on post-anthesis dry matter accumulation and grain-filling characteristics of winter wheat under subsoiling tillage

ZHANG Yan-Yan1,2, LI Ying1,2, LIU Xu-Chen1, HUANG Chao1,2, LYU Jia-Ning1,2, ZHOU Hai-Jia1,3, MA Shou-Tian1,2, QIN An-Zhen1,2, GAO Zi-Le4, WU Guang-Hui4, CHEN Dan4, JI Xia-Nan4, LIU Zhan-Dong1,2,*   

  1. 1 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China; 2 Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China; 3 School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; 4 Henan Yudong Water Conservancy Security Center, Kaifeng 475000, Henan, China
  • Received:2025-04-06 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-11-12 Published online:2025-07-16
  • Supported by:
    This study was supported by the Science & Technology Fundamental Resources Investigation Program (2022FY101601), the Agricultural Science and Technology Innovation Program (ASTIP), and the Key Project of Water Conservancy Science and Technology in Henan Province (GG202247).

摘要: 华北平原农业机械化的发展和应用造成的农田土壤压实、犁底层加厚等情况限制了作物生长。深松耕作能够打破犁底层,提高土壤耕作层环境,促进作物生长,但由于部分地区不合理的灌溉制度弱化了其改土效果。本试验在深松(ST)和旋耕(RT)耕作下采用灌水下限为田持70%的畦灌处理,明确深松耕作对冬小麦干物质积累的促进作用;并在深松耕作下分别设置田持的70% (DI-H)、60% (DI-M)和50% (DI-L) 3个滴灌灌水下限,达到下限时进行灌水,以ST处理为对照,分析深松耕作条件下滴灌不同灌水下限对冬小麦花后干物质积累和籽粒灌浆特性的影响,探究深松耕作下最佳灌水制度。结果表明,与RT相比,ST处理可显著提升花后干物质积累量和促进籽粒灌浆,促进花后干物质积累持续时间(T)和籽粒灌浆持续时间(T)分别延长5.15 d和0.87 d,并提高花后干物质积累速率和籽粒灌浆速率,促进成熟期生物量增加9.7%。在深松耕作下,与ST处理相比,DI-H处理花后干物质积累持续时间(T)增加15.05 d,但花后平均干物质积累速率(Bmean)降低0.10 t hm-2 d-1,导致二者之间花后干物质积累量无显著差异,而籽粒灌浆持续时间(T)延长2.56 d,籽粒重提高22.1% (P < 0.05);DI-M处理T增加8.45 d,Bmean未发生显著变化,花后干物质积累量增加15.7% (P < 0.05),T延长3.64 d,Gmax增加0.18 mg 粒-1 d-1,籽粒重提高20.9% (P < 0.05);但DI-L处理则导致TT均缩短,较ST相比分别缩短5.22 d和3.27 d,GmeanBmean分别降低0.06 mg 粒-1 d-1和0.05 t hm-2 d-1,导致生物量和籽粒重分别降低17.6%和12.3% (P < 0.05)。TOPSIS综合评价结果表明,DI-M处理综合得分最高,因此认为田持的60%水分下限为深松耕作条件下冬小麦滴灌最优灌水制度。该研究为深松耕作条件下合理灌溉制度的制定提供了理论依据和技术支撑。

关键词: 冬小麦, 滴灌, 深松耕作, 籽粒灌浆特性, 花后干物质积累

Abstract:

The development and widespread adoption of agricultural mechanization in the North China Plain have led to issues such as soil compaction and thickening of the plow layer, which in turn restrict crop growth. Subsoiling tillage is an effective method to break the plow pan, improve the soil environment within the tillage layer, and promote crop growth. However, in some regions, irrational irrigation practices have diminished the soil-improving benefits of subsoiling. To elucidate the positive effects of subsoiling on dry matter accumulation in winter wheat, this study employed border irrigation with a lower limit of 70% field capacity under both subsoiling (ST) and rotary tillage (RT). Under the subsoiling condition, three drip irrigation lower limits—70% (DI-H), 60% (DI-M), and 50% (DI-L) of field capacity—were set, with irrigation triggered when the soil moisture reached the respective threshold. Using ST as the control, the effects of different lower limits on post-anthesis dry matter accumulation and grain filling characteristics were evaluated to determine the optimal drip irrigation strategy under subsoiling. Results showed that compared with RT, ST significantly enhanced post-anthesis dry matter accumulation and grain filling, extending the durations of post-anthesis dry matter accumulation (Tdry) and grain filling (Tgrain) by 5.15 d and 0.87 d, respectively. ST also increased the rates of both processes, resulting in a 9.7% increase in final biomass. Among the subsoiling treatments, DI-H prolonged Tdry by 15.05 d compared with ST, but reduced the average post-anthesis dry matter accumulation rate (Bmean) by 0.10 t·hm?2 d?1, leading to no significant difference in total dry matter accumulation. However, DI-H extended Tgrain by 2.56 d and increased grain weight by 22.1% (P < 0.05). The DI-M treatment extended Tdry by 8.45 d without significantly affecting Bmean, resulting in a 15.7% increase in post-anthesis dry matter accumulation (P < 0.05). In addition, DI-M extended Tgrain by 3.64 d, increased maximum grain filling rate (Gmax) by 0.18 mg grain?1 d?1, and improved grain weight by 20.9% (P < 0.05). In contrast, DI-L shortened both Tdry and Tgrain by 5.22 and 3.27 d, respectively, compared with ST, and reduced both Gmean and Bmean by 0.06 mg grain?1 d?1 and 0.05 t hm?2 d?1, ultimately lowering biomass and grain weight by 17.6% and 12.3% (P < 0.05), respectively. A comprehensive evaluation using the TOPSIS method indicated that DI-M had the highest overall score, suggesting that a lower irrigation threshold of 60% field capacity is the optimal drip irrigation regime for winter wheat under subsoiling. This study provides a theoretical basis and technical support for developing rational irrigation strategies under subsoiling conditions.

Key words:

[1] 国家统计局. 2023年中国统计年鉴. 北京: 中国统计出版社, 2019.

National Bureau of Statistics. China Statistical Yearbook 2023. Beijing: China Statistics Press, 2019 (in Chinese).

[2] 秦欢欢, 黄丽想, 王健泉. 灌溉变化对华北平原地下水可持续利用的影响. 长江科学院院报, 2024, 41(4): 37–45.

Qin H H, Huang L X, Wang J Q. Effects of irrigation change on sustainable utilization of groundwater in North China Plain. J Yangtze River Sci Res Inst, 2024, 41(4): 37–45 (in Chinese with English abstract).

[3] 秦欢欢. 华北平原水资源利用系统动力学模拟与仿真. 东华理工大学学报(自然科学版), 2018, 41(2): 158–168.

Qin H H. Simulation and emulation on water resources utilization in the North China Plain based on system dynamics. J East China Univ Technol (Nat Sci), 2018, 41(2): 158–168 (in Chinese with English abstract).

[4] Xu Y Q, Mo X G, Cai Y L, Li X B. Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China. Agric Water Manag, 2005, 75: 38–53.

[5] 张光辉, 费宇红, 刘春华, 严明疆, 王金哲. 华北平原灌溉用水强度与地下水承载力适应性状况. 农业工程学报, 2013, 29(1): 1–10.

Zhang G H, Fei Y H, Liu C H, Yan M J, Wang J Z. Adaptability of irrigation water intensity and groundwater carrying capacity in North China Plain. Trans CSAE, 2013, 29(1): 1–10 (in Chinese with English abstract).

[6] Rasmussen C R, Thorup-Kristensen K, Dresbøll D B. Uptake of subsoil water below 2 m fails to alleviate drought response in deep-rooted Chicory (Cichorium intybus L.). Plant Soil, 2020, 446: 275–290.

[7] Zhang X Y, Pei D, Chen S Y. Root growth and soil water utilization of winter wheat in the North China Plain. Hydrol Process, 2004, 18: 2275–2287.

[8] Tian S Z, Ning T Y, Wang Y, Liu Z, Li G, Li Z J, Lal R. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res, 2016, 163: 207–213.

[9] Schneider F, Don A, Hennings I, Schmittmann O, Seidel S J. The effect of deep tillage on crop yield-what do we really know? Soil Tillage Res, 2017, 174: 193–204.

[10] Li P F, Ma B L, Wei X F, Guo S, Ma Y Q. Deeper root distribution and optimized root anatomy help improve dryland wheat yield and water use efficiency under low water conditions. Plant Soil, 2024, 501: 437–454.

[11] Huang C, Liu X C, Gao Y, Chen H Q, Ma S T, Qin A Z, Zhang Y Y, Gao Z L, Song Y, Sun J K, et al. Response of Triticum vulgare growth and nitrogen allocation to irrigation methods and regimes under subsoiling tillage. Agronomy, 2024, 14: 858.

[12] 孙敏, 高志强, 赵维峰, 任爱霞, 邓妍, 苗果园. 休闲期深松配施氮肥对旱地土壤水分及小麦籽粒蛋白质积累的影响. 作物学报, 2014, 40: 1286–1295.

Sun M, Gao Z Q, Zhao W F, Ren A X, Deng Y, Miao G Y. Effect of subsoiling in fallow period and nitrogen application on soil moisture and grain protein accumulation in dryland wheat. Acta Agron Sin, 2014, 40: 1286–1295 (in Chinese with English abstract).

[13] Zhang Y J, Wang R, Wang S L, Wang H, Xu Z G, Jia G C, Wang X L, Li J. Effects of different sub-soiling frequencies incorporated into no-tillage systems on soil properties and crop yield in dryland wheat-maize rotation system. Field Crops Res, 2017, 209: 151–158.

[14] Bogunovic I, Pereira P, Kisic I, Sajko K, Sraka Tillage M. management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena (Giessen), 2018, 160: 376–384.

[15] Liu X W, Zhang X Y, Chen S Y, Sun H Y, Shao L W. Subsoil compaction and irrigation regimes affect the root–shoot relation and grain yield of winter wheat. Agric Water Manag, 2015, 154: 59–67.

[16] Kumar Jha S, Ramatshaba T S, Wang G S, Liang Y P, Liu H, Gao Y, Duan A W. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric Water Manag, 2019, 217: 292–302.

[17] 李培岭, 张富仓, 贾运岗. 沙漠绿洲地区膜下滴灌棉花水分利用的水氮耦合效应. 干旱地区农业研究, 2009, 27(3): 53–59.

Li P L, Zhang F C, Jia Y G. Coupling effect of water and nitrogen on cotton yield and water use efficiency in different patterns of drip irrigation under film mulching. Agric Res Arid Areas, 2009, 27(3): 53–59 (in Chinese with English abstract).

[18] Lyu Z Y, Diao M, Li W H, Cai J, Zhou Q, Wang X, Dai T B, Cao W X, Jiang D. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system. Agric Water Manag, 2019, 212: 252–261.

[19] Cao Y X, Cai H J, Sun S K. Effects of growth-stage-based limited irrigation management on the growth, yields, and radiation utilization efficiency of winter wheat in northwest China. J Sci Food Agric, 2021, 101: 5819–5826.

[20] Li J P, Xu X X, Lin G, Wang Y Q, Liu Y, Zhang M, Zhou J Y, Wang Z M, Zhang Y H. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci Total Environ, 2018, 643: 367–377.

[21] Yan S C, Wu Y, Fan J L, Zhang F C, Guo J J, Zheng J, Wu L F. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agric Water Manag, 2022, 261: 107380.

[22] Wang J D, Gong S H, Xu D, Yu Y D, Zhao Y F. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain. Irrig Sci, 2013, 31: 1025–1037.

[23] 聂紫瑾, 陈源泉, 张建省, 师江涛, 李超, 高旺盛, 隋鹏. 黑龙港流域不同滴灌制度下的冬小麦产量和水分利用效率. 作物学报, 2013, 39: 1687–1692.

Nie Z J, Chen Y Q, Zhang J S, Shi J T, Li C, Gao W S, Sui P. Effects of drip irrigation patterns on wheat yield and water use efficiency in Heilonggang region. Acta Agron Sin, 2013, 39: 1687–1692 (in Chinese with English abstract).

[24] Hao T J, Zhu Z X, Zhang Y L, Liu S, Xu Y F, Xu X X, Zhao C X. Effects of drip irrigation and fertilization frequency on yield, water and nitrogen use efficiency of medium and strong gluten wheat in the Huang-Huai-Hai Plain of China. Agronomy, 2023, 13: 1564.

[25] Fang Q, Zhang X Y, Shao L W, Chen S Y, Sun H Y. Assessing the performance of different irrigation systems on winter wheat under limited water supply. Agric Water Manag, 2018, 196: 133–143.

[26] 刘战东, 张凯, 黄超, 孙景生. 不同耕作和灌溉方式对玉米光合特性的影响. 水土保持学报, 2019, 33(4): 213–220.

Liu Z D, Zhang K, Huang C, Sun J S. Effects of different tillage and irrigation methods on photosynthetic characteristics of maize. J Soil Water Conserv, 2019, 33(4): 213–220 (in Chinese with English abstract).

[27] Yang W J, Liu W J, Li Y L, Wang S W, Yin L N, Deng X P. Increasing rainfed wheat yield by optimizing agronomic practices to consume more subsoil water in the Loess Plateau. Crop J, 2021, 9: 1418–1427.

[28] Huang G B, Chai Q, Feng F X, Yu A Z. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid northwest China. J Integr Agric, 2012, 11: 1286–1296.

[29] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响. 作物学报, 2025, 51: 207–220.

Zhang J, Hu C, Zhou Q H, Ren K M, Dong S Y, Liu A H, Wu J Z, Huang M, Li Y J. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat. Acta Agron Sin, 2025, 51: 207–220 (in Chinese with English abstract).

[30] González F G, Miralles D J, Slafer G A. Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot, 2011, 62: 4889–4901.

[31] Sarandón S J, Gianibelli M C. Effect of foliar sprayings of urea during or after anthesis on dry matter and nitrogen accumulation in the grain of two wheat cultivars of T. aestivum L. Fert Res, 1992, 31: 79–84.

[32] 王晓雨, 王小平, 史文宇, 刘美艳, 马健, 郭云鹏, 宋瑞欣, 王清涛. 拔节期冬小麦光合特性、干物质积累和产量对干旱胁迫的响应. 新疆农业科学, 2023, 60: 2163–2172.

Wang X Y, Wang X P, Shi W Y, Liu M Y, Ma J, Guo Y P, Song R X, Wang Q T. Responses of photosynthetic characteristics, dry matter accumulation and yield to drought stress in winter wheat at jointing stage. Xinjiang Agric Sci, 2023, 60: 2163–2172 (in Chinese with English abstract).

[33] 刘童, 夏文君, 彭小爱, 卢茂昂, 曹磊, 张玲, 何贤芳, 朱玉磊. 氮肥运筹对小麦籽粒灌浆、花后干物质转运及植株糖含量影响. 四川农业大学学报, 2024, 42: 771–779.

Liu T, Xia W J, Peng X A, Lu M A, Cao L, Zhang L, He X F, Zhu Y L. Effects of nitrogen fertilizer operation on grain filling, dry matter transport after anthesis and sugar content in wheat plants. J Sichuan Agric Univ, 2024, 42: 771–779 (in Chinese with English abstract).

[34] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23: 2030–2038.

Li S Q, Shao M A, Li Z Y, Wu W M, Zhang X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Bot Boreali-Occident Sin, 2003, 23: 2030–2038 (in Chinese with English abstract).

[35] Asseng S, van Herwaarden A F. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil, 2003, 256: 217–229.

[36] Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grain filling of spring wheat. Crop Sci, 1992, 32: 1238–1242.

[37] Pheloung P C, Siddique K. Contribution of stem dry matter to grain yield in wheat cultivars. Funct Plant Biol, 1991, 18: 53.

[38] Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez A L, Seminario A, Soba D, Ben Mariem S, Garriga M, Aranjuelo I. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 2020, 9: 88.

[39] Liu X C, Liu J M, Huang C, Liu H H, Meng Y, Chen H Q, Ma S T, Liu Z D. The impacts of irrigation methods and regimes on the water and nitrogen utilization efficiency in subsoiling wheat fields. Agric Water Manag, 2024, 295: 108765.

[40] Shi R C, Tong L, Ding R S, Du T S, Shukla M K. Modeling kernel weight of hybrid maize seed production with different water regimes. Agric Water Manag, 2021, 250: 106851.

[41] Zhai L C, Xu P, Zhang Z B, Li S K, Xie R Z, Zhai L F, Wei B H. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Soil Tillage Res, 2017, 170: 167–174.

[42] Shi Y, Yu Z W, Man J G, Ma S Y, Gao Z Q, Zhang Y L. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Tillage Res, 2016, 160: 73–81.

[43] Ouyang X Y, Jiang G Y, Liu J G, Wang H Q, Wang R R. Effect of nitrogen reduction on the remobilization of post-anthesis assimilates to grain and grain-filling characteristics in a drip-irrigated spring wheat system. Crop Sci, 2023, 63: 293–305.

[44] Yao C S, Li J P, Zhang Z, Liu Y, Wang Z M, Sun Z C, Zhang Y H. Improving wheat yield, quality and resource utilization efficiency through nitrogen management based on micro-sprinkler irrigation. Agric Water Manag, 2023, 282: 108277.

[1] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[2] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[3] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[4] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[5] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[6] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[7] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[8] 崔栋, 王同超, 杨松林, 任佰朝, 高英波, 于宁宁, 张吉旺. 灌溉方式和种植密度优化协同提高夏玉米产量和水分利用效率[J]. 作物学报, 2025, 51(11): 3026-3037.
[9] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[10] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[11] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[12] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[13] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[14] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[15] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .