欢迎访问作物学报,今天是

作物学报

• •    

苦荞苗期耐低磷种质筛选及耐低磷综合评价

葛家豪,雷欣月,王清明,韩慧冰,李少飞,王琦璇,冯佰利,高金锋*
  

  1. 西北农林科技大学农学院 / 作物抗逆与高效生产全国重点实验室, 陕西杨凌 712100
  • 收稿日期:2025-05-06 修回日期:2025-08-13 接受日期:2025-08-13 网络出版日期:2025-08-21
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1202700), 陕西省重点研发计划项目(2023-ZDLNY-06, 2025NC-YBXM-082)和陕西省现代种业振兴专项(K3031223130)资助。

Screening of low-phosphorus tolerant germplasm and comprehensive evaluation of low phosphorus tolerance in Tartary buckwheat at seedling stage

GE Jia-Hao,LEI Xin-Yue,WANG Qing-Ming,HAN Hui-Bing,LI Shao-Fei,WANG Qi-Xuan,FENG Bai-Li,GAO Jin-Feng*#br#   

  1. College of Agronomy, Northwest A&F University / State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Yangling 712100, Shaanxi, China
  • Received:2025-05-06 Revised:2025-08-13 Accepted:2025-08-13 Published online:2025-08-21
  • Supported by:
    This study was supported by the National Key Research and Development Program (2023YFD1202700), the Key Research and Development Program of Shaanxi Province (2023-ZDLNY-06, 2025NC-YBXM-082), and the Modern Seed Industry Revitalization Special Fund of Shaanxi Province (K3031223130).

摘要:

土壤磷素的低有效性已经成为了我国苦荞产量提升的重要限制因素。为了综合评价我国苦荞种质资源耐低磷性,筛选耐低磷性苦荞品种,本研究以200份苦荞种质资源为材料,设置正常磷(2.00 mmol L-1 KH2PO4)和低磷(0.05 mmol L-1 KH2PO42个处理,测量苦荞苗期株高、主根长度、地上部鲜重和根系表面积等17个指标,利用主成分分析、相关性分析、隶属函数分析和聚类分析等方法对参试苦荞种质的耐低磷性进行综合评价和筛选,并利用逐步回归分析建立了耐低磷性回归方程。结果表明苦荞幼苗各指标在正常磷及低磷处理下均存在较大变异;通过主成分分析将17个单项指标转换为5个独立的综合指标,并利用综合指标的隶属函数值计算耐低磷综合评价值D;进一步采用系统聚类分析法,根据D值的大小将200份种质资源分成511份高耐低磷型材料、15耐低磷型材料、80份中等耐低磷型材料81份低磷敏感型材料和13份低磷高敏感型材料;通过逐步回归分析建立苦荞苗期耐低磷性预测模型:D = -0.38+0.07X1+0.42X2+0.07X3+0.06X4+0.06X5+0.05X6+0.08X7+0.05X8 (R2 = 0.98),筛选出总根长、总鲜物重、株高、根系投影面积、根尖数、根分叉数、总干物重和根体积可作为苦荞耐低磷性鉴定的指标。本研究构建了苦荞耐低磷性综合评价体系,筛选出11份高耐低磷型材料和13份低磷高敏感型材料,为苦荞耐低磷机制研究和选育耐低磷品种提供了重要的理论依据。

关键词: 苦荞, 种质资源, 苗期, 耐低磷性, 综合评价

Abstract:

Low phosphorus availability in soil has become a major limiting factor for improving Tartary buckwheat production in China. To comprehensively evaluate the low-phosphorus tolerance of Tartary buckwheat germplasm and identify tolerant varieties, this study examined 200 germplasm resources under two phosphorus treatments: normal phosphorus (2.00 mmol L-1 KH2PO4) and low phosphorus (0.05 mmol L-1 KH2PO4). Seventeen seedling-stage traits were measured, including plant height, taproot length, shoot fresh weight, and root surface area. Principal component analysis (PCA), correlation analysis, membership function analysis, and cluster analysis were employed to comprehensively assess and classify the low-phosphorus tolerance of the germplasm. In addition, stepwise regression analysis was used to develop a predictive model for low-phosphorus tolerance. The results revealed significant variation in seedling traits under both phosphorus conditions. PCA reduced the 17 traits to five independent comprehensive indices, which were then used to calculate the comprehensive evaluation value (D) based on membership function analysis. Cluster analysis based on D values grouped the 200 accessions into five categories: 11 highly tolerant, 15 moderately tolerant, 80 tolerant, 81 sensitive, and 13 highly sensitive to low-phosphorus stress. Stepwise multiple regression produced a predictive model for low-phosphorus tolerance at the seedling stage: D=-0.38+0.07X1+0.42X2+0.07X3+0.06X4+0.06X5+0.05X6+0.08X7+0.05X8 (R2=0.98). Key traits contributing to this model included total root length, total fresh weight, plant height, root projection area, number of root tips, number of root forks, total dry weight, and root volume. This study established a comprehensive evaluation system for low-phosphorus tolerance in Tartary buckwheat and identified 11 highly tolerant and 13 highly sensitive accessions. These findings provide a theoretical foundation for understanding the mechanisms of low-phosphorus tolerance and for breeding low-phosphorus-tolerant Tartary buckwheat varieties.

Key words: Tartary buckwheat, germplasm resources, seedling stage, low phosphorus tolerant, comprehensive evaluation

[1] 杨俊诚, 李桂花, 姜慧敏, 张建峰, 张娟. 同位素示踪农业应用的研究热点. 同位素, 2019, 32(3): 162170.

Yang J C, Li G H, Jiang H M, Zhang J F, Zhang J. Hotspot fields of isotopes tracing in agricultural science. J Isot, 2019, 32(3): 162–170 (in Chinese with English abstract).

[2] Blackwell M, Darch T, Haslam R. Phosphorus use efficiency and fertilizers: future opportunities for improvements. Front Agric Sci Eng, 2019, 6: 332–340.

[3] 彭晓云, 魏亮. 新型磷肥—农用聚磷酸铵发展现状及田间应用效果. 磷肥与复肥, 2024, 39(5): 4952.

Peng X Y, Wei L. Development status and field application effects of a new type phosphate fertilizer-agricultural ammonium polyphosphate. Phos Comp Fert, 2024, 39(5): 4952 (in Chinese with English abstract).

[4] He Y Q, Zhang K X, Shi Y L, Lin H, Huang X, Lu X, Wang Z R, Li W, Feng X B, Shi T X, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol, 2024, 25: 61.

[5] Zou L, Wu D T, Ren G X, Hu Y C, Peng L X, Zhao J L, Garcia-Perez P, Carpena M, Prieto M A, Cao H, et al. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit Rev Food Sci Nutr, 2023, 63: 657–673.

[6] 于秋竹, 邱俊华, 杜含梅, 王安虎. 不同苦荞种质资源生长发育及硒响应特征综合评价研究. 作物杂志, 网络首发[2025-03-28], https://link.cnki.net/urlid/11.1808.S.20250327.1906.014.

Yu Q Z, Qiu J H, Du H M, Wang A H. Comprehensive evaluation study on growth, development, and selenium response characteristics of different Tartary buckwheat germplasm resources. Crops, Published online [2025-03-28], https://link.cnki.net/urlid/11.1808.S.20250327.1906.014 (in Chinese with English abstract).

[7] 张伟丽. 氮磷钾素对苦荞产量性状及其淀粉理化特性的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.

Zhang W L. Effects of Nitrogen Phosphorus and Potassium on Yield Traits and Physicochemical Characters of Tartary Buckwheat Starch. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract).

[8] 张裕川. 遮阴和磷肥互作对苦荞生长发育及籽粒品质的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2022.

Zhang Y C. Effects of Interaction Between Shading and Phosphate Fertilizer on Growth and Grain Quality of Tartary Buckwheat Starch. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).

[9] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, . 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831845.

Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831–845 (in Chinese with English abstract).

[10] 李敏, 时振坤, 晁召飞, 袁天宇, 陈士林, 吴向远. 玉米苗期耐低磷种质筛选及综合评价. 河南科技学院学报(自然科学版), 2024, 52(6): 915.

Li M, Shi Z K, Chao Z F, Yuan T Y, Chen S L, Wu X Y. Screening and comprehensive evaluation of maize germplasm with low phosphorus tolerance during seedling stage. J Henan Inst Sci Technol (Nat Sci Edn), 2024, 52(6): 915 (in Chinese with English abstract).

[11] Lu H, Wang F, Wang Y, Lin R B, Wang Z Y, Mao C Z. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ, 2023, 46: 11041119.

[12] 王晶琴, 石贵阳, 杨松花, 陈竹, 杨通黎, 马秀国. 不同基因型大豆苗期耐低磷性鉴定及指标筛选. 福建农业学报, 2022, 37: 702711.

Wang J Q, Shi G Y, Yang S H, Chen Z, Yang T L, Ma X G. Determination and index selection on tolerance of soybean seedlings to phosphorus deficiency in soil. Fujian J Agric Sci, 2022, 37: 702711 (in Chinese with English abstract).

[13] 杨春婷, 张永清, 马星星, 陈伟, 董璐, 张楚, 路之娟. 苦荞耐低磷基因型筛选及评价指标的鉴定. 应用生态学报, 2018, 29: 29973007.

Yang C T, Zhang Y Q, Ma X X, Chen W, Dong L, Zhang C, Lu Z J. Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus tolerance. Chin J Appl Ecol, 2018, 29: 29973007 (in Chinese with English abstract).

[14] 汪燕, 廖凯, 喻武鹃, 黄娟, 邓娇, 霍冬敖, 孙艳红, 王鹏程, 梁成刚. 苦荞耐低磷力鉴定及其产量和品质分析. 江苏农业学报, 2018, 34: 503510.

Wang Y, Liao K, Yu W J, Huang J, Deng J, Huo D A, Sun Y H, Wang P C, Liang C G. Identification of low-phosphorus tolerance and analysis of yield and quality in Tartary buckwheat. Jiangsu J Agric Sci, 2018, 34: 503510 (in Chinese with English abstract).

[15] Brownlie W J, Sutton M A, Reay D S, Heal K V, Hermann L, Kabbe C, Spears B M. Global actions for a sustainable phosphorus future. Nat Food, 2021, 2: 71–74.

[16] Peng Y, Huo W G, Feng G. Maximising cotton phosphorus utilisation for zero surplus and high yields: a review of innovative P management strategies. Field Crops Res, 2024, 313: 109429.

[17] López-Arredondo D L, Leyva-González M A, González-Morales S I, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol, 2014, 65: 95–123.

[18] Zhang Z L, Liao H, Lucas W J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol, 2014, 56: 192–220.

[19] Zhang B B, Zhu X X, Yuan P, Han B, Wu T, Din I, Wang C, Hammond J P, Wang S L, Ding G D, et al. Root morphological adaptation and leaf lipid remobilization drive differences in phosphorus use efficiency in rapeseed seedlings. Crop J, 2025, 13: 524–535.

[20] 解斌, 安秀红, 陈艳辉, 程存刚, 康国栋, 周江涛, 赵德英, 李壮, 张艳珍, 杨安. 不同苹果砧木对持续低磷的响应及适应性评价. 中国农业科学, 2022, 55: 25982612.

Xie B, An X H, Chen Y H, Cheng C G, Kang G D, Zhou J T, Zhao D Y, Li Z, Zhang Y Z, Yang A. Response and adaptability evaluation of different apple rootstocks to continuous phosphorus deficiency. Sci Agric Sin, 2022, 55: 2598–2612 (in Chinese with English abstract).

[21] Ma B, Zhang Y, Fan Y F, Zhang L, Li X Y, Zhang Q Q, Shu Q Y, Huang J R, Chen G Y, Li Q, et al. Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci USA, 2024, 121: e2404199121.

[22] Vejchasarn P, Lynch J P, Brown K M. Genetic variability in phosphorus responses of rice root phenotypes. Rice, 2016, 9: 29.

[23] Deng Y, Teng W, Tong Y P, Chen X P, Zou C Q. Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Front Plant Sci, 2018, 9: 1614.

[24] Grossman J D, Rice K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol Appl, 2012, 5: 850–857.

[25] Liu D. Root developmental responses to phosphorus nutrition. J Integr Plant Biol, 2021, 63: 1065–1090.

[26] Xie B X, Chen Q Q, Lu X, Chen K, Yang Y S, Tian J, Liang C Y. Proton exudation mediated by GmVP2 has widespread effects on plant growth, remobilization of soil phosphorus, and the structure of the rhizosphere microbial community. J Exp Bot, 2023, 74: 1140–1156.

[27] 高洋, 刘斯嘉, 刘天昊, 李书鑫, 张锋, 刘海峰, 王斌, 李向楠. 基于叶绿素荧光动力学的小麦耐渍品种筛选. 分子植物育种, 网络首发[2025-04-16], https://link.cnki.net/urlid/46.1068.S.20250416.1616.004.

Gao Y, Liu S J, Liu T H, Li S X, Zhang F, Liu H F, Wang B, Li X N. Screening of wheat varieties with waterlogging stress based on chlorophyll fluorescence kinetics. Mol Plant Breed, Published online [2025-04-16], https://link.cnki.net/urlid/46.1068.S.20250416.1616.004 (in Chinese with English abstract).

[28] 文璇, 钟秀丽, 王尚文, 金涛, 彭君, 刘恩科. 基于耐性指数的青稞苗期耐低氮种质筛选及不同氮效率类型综合评价. 作物学报, 2025, 51: 19491958.

Wen X, Zhong X L, Wang S W, Jin T, Peng J, Liu E K. Screening of low nitrogen tolerant germplasm in seedling highland barley based on tolerance index and comprehensive evaluation of different nitrogen efficiency types. Acta Agron Sin, 2025, 51: 19491958 (in Chinese with English abstract).

[29] 郑焕斌, 李明, 杨素欣, 吴委林. 大豆种质资源苗期耐碱筛选及评价分析. 中国农业科技导报(中英文), 2025, 27(7): 54–71.

Zheng H B, Li M, Yang S X, Wu W L. Alkaline tolerance screening and evaluation analysis of soybean germplasm resources at seedling stage. J Agric Sci Technol, 2025, 27(7): 54–71 (in Chinese with English abstract).

[30] 李阿蕾, 戴志刚, 陈基权, 邓灿辉, 唐蜻, 程超华, 许英, 张小雨, 粟建光, 杨泽茂. 239份长果种黄麻种质资源萌发期耐镉性评价及耐镉资源筛选. 作物学报, 2023, 49: 26772699.

Li A L, Dai Z G, Chen J Q, Deng C H, Tang Q, Cheng C H, Xu Y, Zhang X Y, Su J G, Yang Z M. Evaluation of cadmium tolerance in germination stage of 239 dark jute (Corchorus olitorius L.) germplasm resources and screening of cadmium tolerance resources. Acta Agron Sin2023, 49: 26772699 (in Chinese with English abstract).

[31] 李亮, 徐梦强, 丁凡, 林苡婧, 王飞, 许卫锋, 许飞云. 水稻耐酸性综合评价及耐酸种质筛选. 植物营养与肥料学报, 2024, 30: 17181730.

Li L, Xu M Q, Ding F, Lin Y J, Wang F, Xu W F, Xu F Y. Comprehensive evaluation of acid tolerance rice and screening of acid-tolerant germplasm in rice. J Plant Nutr Fert, 2024, 30: 17181730 (in Chinese with English abstract).

[32] 米热扎提江·喀由木, 西尔艾力·吾麦尔江, 李晓曈, 王香茹, 贵会平, 张恒恒, 张西岭, 董强, 宋美珍. 棉花苗期耐低磷种质筛选及耐低磷综合评价. 中国农业科学, 2023, 56: 41504162.

Mirezhatijiang K, Xieraili W, Li X T, Wang X R, Gui H P, Zhang H H, Zhang X L, Dong Q, Song M Z. Screening of low phosphorus tolerant germplasm in cotton at seedling stage and comprehensive evaluation of low phosphorus tolerance. Sci Agric Sin, 2023, 56: 41504162 (in Chinese with English abstract).

[33] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应. 作物学报, 2019, 45: 601612.

Yuan Y C, Chen X Y, Li M M, Li P, Jia Y T, Han Y H, Xing G F. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet. Acta Agron Sin2019, 45: 601612 (in Chinese with English abstract).

[34] 罗佳, 候银莹, 程军回, 王宁宁, 陈波浪. 低磷胁迫下不同磷效率基因型棉花的根系形态特征. 中国农业科学, 2016, 49: 22802289.

Luo J, Hou Y Y, Cheng J H, Wang N N, Chen B L. Root morphological characteristics of cotton genotypes with different phosphorus efficiency under phosphorus stress. Sci Agric Sin, 2016, 49: 22802289 (in Chinese with English abstract).

[35] 姚锋剑.大豆根系表型性状可塑性及其对低磷胁迫的适应特征. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.

Yao J F. Plasticity of Soybean Root Phenotypic Traits and Their Adaptation to Low Phosphorus Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).

[1] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[2] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[3] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
[4] 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537.
[5] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[6] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[7] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[8] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[9] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[10] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[11] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[12] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[13] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[14] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[15] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!