• •
王婷**,段武丽**,王蕊,刘海岚*
WANG Ting**,DUAN Wu-Li**,WANG Rui,LIU Hai-Lan*
摘要:
植物甘氨酸甜菜碱(glycine betaine, GB)普遍存在于植物、动物、细菌、藻类中,可在细胞质中累积达到一定水平以后调节渗透压,维持细胞的水分平衡,对于植物的渗透胁迫具有重要的作用。胆碱单加氧酶(choline monooxygenase, CMO)是植物GB生物合成途径的限速酶。本研究对168个基因组进行分析,其中131个基因组中含CMO同源基因,鉴定得到169个CMO成员。通过进行基因对选择压分析,结果表明该基因主要受纯化选择,只有7个基因对受到正向选择。另外,CMO基因家族被划分为6个亚家族,除F亚家族外,5个亚家族中均检测到正选择位点。Ring hydroxyl A结构域和Rieske结构域的选择压分析结果表明,2个结构域的dN/dS值呈极显著的正相关,发生了协同进化。通过qRT-PCR分析显示玉米CMO基因在MgSO4胁迫下表达整体表现为上调。本研究结果从多方面探讨了CMO基因的进化与表达情况,以期为后续深入利用该基因进行作物抗逆育种提供了理论依据。
[1] Weretilnyk E A, Bednarek S, McCue K F, Rhodes D, Hanson A D. Comparative biochemical and immunological studies of the Glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 1989, 178: 342–352. [2] Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 357–384. [3] Sakamoto A, Murata N. The role of Glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 2002, 25: 163–171. [4] Brown A D, Simpson J R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol, 1972, 72: 589–591.
[5] 侯晓敏, 闫锋, 董扬, 赵富阳, 李清泉, 季生栋, 刘悦, 兰英. 外源甜菜碱对干旱胁迫下谷子萌发及幼苗生理特性的影响. 作物杂志, 2025, (2): 228–233. [6] Yuwansiri R, Park E J, Jeknić Z, Chen T H H. Enhancing cold tolerance in plants by genetic engineering of glycinebetaine synthesis. In: Li P H, Palva E T, eds. Plant Cold Hardiness. Boston, MA: Springer US, 2002. pp 259–275. [7] Chen W P, Li P H, Chen T H H. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ, 2000, 23: 609–618. [8] Park E J, Jeknic Z, Chen T H H. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol, 2006, 47: 706–714. [9] Nomura M, Muramoto Y, Yasuda S, Takabe T, Kishitani S. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley. Euphytica, 1995, 83: 247–250. [10] Zulfiqar F, Ashraf M, Siddique K H M. Role of Glycine betaine in the thermotolerance of plants. Agronomy, 2022, 12: 276. [11] Rath H, Sappa P K, Hoffmann T, Salazar M G, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U. Impact of high salinity and the compatible solute Glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol, 2020, 22: 3266–3286. [12] Russell B L, Rathinasabapathi B, Hanson A D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol, 1998, 116: 859–865. [13] Rathinasabapathi B, Burnet M, Russell B L, Gage D A, Liao P C, Nye G J, Scott P, Golbeck J H, Hanson A D. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of Glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA, 1997, 94: 3454–3458.
[14] 朱天艺, 龚一富, 刘增美, 王何瑜. 北美海蓬子胆碱单加氧酶基因CMO的克隆及表达研究. 宁波大学学报(理工版), 2016, 29(4): 7–12.
[15] 曹红利, 岳川, 郝心愿, 王新超, 杨亚军. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087–3096.
[16] 张慧军, 董合忠, 石跃进, 陈受宜, 朱永红. 山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达. 作物学报, 2007, 33: 1073–1078.
[17] 李慧, 丛郁, 常有宏, 蔺经, 盛宝龙. 杜梨胆碱单加氧酶基因克隆及胁迫表达. 西北植物学报, 2012, 32: 1093–1098. [18] Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389–3402. [19] Eddy S R. Profile hidden Markov models. Bioinformatics, 1998, 14: 755–763. [20] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547–1549. [21] Yang Z H. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586–1591.
[22] 兰海, 向勇, 李芦江, 韦如俊, 夏超. 玉米新品种川单99的选育与推广. 玉米科学, 2023, 31(2): 25–29. [23] Jiang Y R, Zhu S J, Yuan J J, Chen G L, Lu G Q. A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes Genom, 2016, 38: 1013–1020. [24] Xu Z J, Sun M L, Jiang X F, Sun H P, Dang X M, Cong H Q, Qiao F. Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front Plant Sci, 2018, 9: 1469. [25] Moosavi-Nejhad M, Estaji A, Karimi H R, Roosta H R. Glycine betaine induced changes on morphological traits and osmolyte compounds in cucumber under salinity stress. Acta Hortic, 2021: 413–418. [26] Rajashekar C B, Zhou H, Marcum K B, Prakash O. Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassa Duch.) plants. Plant Sci, 1999, 148: 175–183. [27] Castiglioni P, Bell E, Lund A, Rosenberg A F, Galligan M, Hinchey B S, Bauer S, Nelson D E, Bensen R J. Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct, 2018, 2: e00040. [28] Kumari A, Kapoor R, Bhatla S C. Nitric oxide and light co-regulate Glycine betaine homeostasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity. Plant Signal Behav, 2019, 14: 1666656. [29] Fan W J, Zhang M, Zhang H X, Zhang P. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One, 2012, 7: e37344. [30] Abbas S R, Ahmad S D, Sabir S M, Shah A H. Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, Glycine-betaine and proline contents. J Soil Sci Plant Nutr, 2014, 14: 233–243. [31] Khan M I R, Asgher M, Khan N A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem, 2014, 80: 67–74. [32] Mickelbart M V, Chapman P, Collier-Christian L. Endogenous levels and exogenous application of glycinebetaine to grapevines. Sci Hortic, 2006, 111: 7–16. [33] Shirasawa K, Takabe T, Takabe T, Kishitani S. Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot, 2006, 98: 565–571. [34] Bray L, Chriqui D, Gloux K, Le Rudulier D, Meyer M, Peduzzi J. Betaines and free amino acids in salt stressed vitroplants and winter resting buds of Populus trichocarpa x deltoides. Physiol Plant, 1991, 83: 136–143. [35] Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T. Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem, 2002, 277: 41352–41360. [36] Khan M S, Yu X, Kikuchi A, Asahina M, Watanabe K N. Genetic engineering of Glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol, 2009, 26: 125–134. [37] Hanada K, Zou C, Lehti-Shiu M D, Shinozaki K, Shiu S H. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol, 2008, 148: 993–1003. [38] Freeling M, Thomas B C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res, 2006, 16: 805–814.
[39] 刘丹, 李爱华, 刘岱松, 周波, 吴自友, 黄凯. 甜菜碱在提高烟草抗逆性中的作用. 安徽农业科学, 2020, 48(7): 11–13. [40] Zhang J, Tan W, Yang X H, Zhang H X. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of Glycine betaine in tobacco. Plant Cell Rep, 2008, 27: 1113–1124. [41] Nuccio M L, Russell B L, Nolte K D, Rathinasabapathi B, Gage D A, Hanson A D. The endogenous choline supply limits Glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J, 1998, 16: 487–496.
|
[1] | 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526. |
[2] | 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1和ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329. |
[3] | 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306. |
[4] | 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340. |
[5] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[6] | 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163. |
[7] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. |
[8] | 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837. |
[9] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
[10] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[11] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[12] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[13] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
[14] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[15] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
|