欢迎访问作物学报,今天是

作物学报

• •    

玉米穗腐病的抗性遗传研究进展与育种应用

苏爱国, 肖森林, 易红梅, 段赛茹, 王帅帅, 张如养, 邢锦丰, 李春辉, 孙  轩, 徐瑞斌, 徐田军, 李志勇, 张  勇, 王荣焕*, 宋  伟*, 赵久然*   

  1. 北京市农林科学院玉米研究所, 北京100097
  • 收稿日期:2025-07-18 修回日期:2025-10-10 接受日期:2025-10-10 出版日期:2025-10-13 网络出版日期:2025-10-13
  • 通讯作者: 赵久然, E-mail: maizezhao@126.com; 宋伟, E-mail: songwei@baafs.net.cn; 王荣焕, E-mail: ronghuanwang@126.com
  • 基金资助:
    本研究由北京市农林科学院科技创新能力建设专项(KJCX20230303)和北京学者计划项目(BSP041)资助。

Research progress and breeding application of resistance genetics to ear rot in maize

Su Ai-Guo, Xiao Sen-Lin, Yi Hong-Mei, Duan Sai-Ru, Wang Shuai-Shuai, Zhang Ru-Yang, Xing Jin-Feng, Li Chun-Hui, Sun Xuan, Xu Rui-Bin, Xu Tian-Jun, Li Zhi-Yong, Zhang Yong, Wang Rong-Hang*, Song Wei*, and Zhao Jiu-Ran*   

  1. Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2025-07-18 Revised:2025-10-10 Accepted:2025-10-10 Published:2025-10-13 Published online:2025-10-13
  • Contact: 赵久然, E-mail: maizezhao@126.com; 宋伟, E-mail: songwei@baafs.net.cn; 王荣焕, E-mail: ronghuanwang@126.com
  • Supported by:
    This study was supported by the Beijing Academy of Agriculture and Forestry Sciences Innovation Capability Construction Special Project (KJCX20230303) and the Beijing Scholars Program (BSP041).

摘要: 穗腐病是玉米生产中的一种主要病害,不仅影响产量和品质,病原菌产生的毒素还会危害人畜的健康安全。选育和种植玉米抗病品种,是防治玉米穗腐病最有效的途径之一。目前,国内外学者对优势病原菌的抗性候选基因和分子遗传机制进行了深入研究。玉米的10条染色体上,均有穗腐病抗性相关QTL和显著关联的SNP位点报道。但由于病原菌侵染的复杂性,以及其抗性为微效多基因控制的数量性状,导致相关研究应用于抗病育种实践的实例并不多。本文介绍了玉米穗腐病的主要病原菌种类、地域分布、发病影响因素以及毒素危害,总结了近年来在拟轮枝穗腐病(Fusarium ear rot, FER)和禾谷镰孢穗腐病(Gibberella ear rot, GER)抗性基因挖掘和分子遗传机制方面取得的研究进展,并对抗病育种进行了展望。多组学交叉研究的深入和新生物技术的应用将加速穗腐病主效抗性基因的挖掘和抗病分子机制解析,进而促进玉米种质创制和穗腐病抗性品种选育。

关键词: 玉米, 穗腐病, 病原菌, 抗性基因, 防御机制, 抗病育种

Abstract: Ear rot is a significant disease in maize production, with ramifications for both yield and quality. Furthermore, the toxin produced by the pathogen poses a threat to human and animal health. The most efficacious method of controlling ear rot is to breed and plant highly resistant varieties of maize. A significant number of researchers have conducted in-depth studies on the resistance candidate genes and molecular genetic mechanisms in response to dominant pathogens. QTL and significant associated SNP loci related to ear rot resistance have been reported on all 10 chromosomes of maize. However, due to the complexity of pathogen infection and the fact that resistance is quantitative trait locus-controlled trait influenced by multiple genes, there are few examples of such research being applied to disease-resistant breeding. The present paper introduces the main pathogens of corn ear rot, their geographical distribution, factors influencing disease incidence, and toxin hazards. The present paper constitutes a review of recent research progress in the identification of FER (Fusarium ear rot, FER) and GER (Gibberella ear rot, GER) resistance genes and their molecular genetic mechanisms. Moreover, it provides an outlook for disease-resistant breeding. Advances in multi-omics joint analysis and the application of new biological technologies are expected to promote the identification of major resistance genes and the elucidation of molecular mechanisms. Consequently, this may lead to the accelerated creation of resistance germplasm and breeding for resistance to ear rot in maize.

[1] Naqvi S A H, Farhan M, Ahmad M, et al. Fungicide resistance in Fusarium species: exploring environmental impacts and sustainable management strategies. Arch Microbiol, 2025, 207: 31.

[2] Mesterházy Á, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize: a review. Plant Breed, 2012, 131: 1–19.

[3] 宋立秋, 魏利民, 王振营, 等. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487–490.

Song L Q, Wei L M, Wang Z Y, et al. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. J Plant Prot, 2009, 36: 487–490 (in Chinese with English abstract).

[4] Duan C X, Qin Z H, Yang Z H, et al. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8: 186.

[5] Wicklow D T, Rogers K D, Dowd P F, et al. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Fungal Biol, 2011, 115: 133–142.

[6] 夏玉生, 郭成, 温胜慧, 等. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61–71.

Xia Y S, Guo C, Wen S H, et al. Identification of maize germplasm resistant to Fusarium ear rot and Gibberella ear rot and genetic diversity analysis of resistant lines. J Plant Genet Resour, 2022, 23: 61–71 (in Chinese with English abstract).

[7] 段灿星, 王晓鸣, 宋凤景, 等. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152–2164.

Duan C X, Wang X M, Song F J, et al. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152–2164 (in Chinese with English abstract).

[8] 秦子惠, 任旭, 江凯, 等. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41: 589–596.

Qin Z H, Ren X, Jiang K, et al. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. J Plant Prot, 2014, 41: 589–596 (in Chinese with English abstract).

[9] 孙华, 郭宁, 石洁, 等. 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017, 47: 577–583.

Sun H, Guo N, Shi J, et al. Characterization of the maize ear rot pathogens and genetic diversity analysis of dominant species in Hainan. Acta Phytopathol Sin, 2017, 47: 577–583 (in Chinese with English abstract).

[10] 张小飞, 邹成佳, 崔丽娜, 等. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078–2082.

Zhang X F, Zou C J, Cui L N, et al. Identification of pathogen causing maize ear rot and inoculation technique in southwest China. Southwest China J Agric Sci, 2012, 25: 2078–2082 (in Chinese with English abstract).

[11] 郭满库, 王晓鸣, 何苏琴, 等. 2009年甘肃省玉米穗腐病、茎基腐病的发生危害. 植物保护, 2011, 37(4): 134–137.

Guo M K, Wang X M, He S Q, et al. Occurrence of maize kernel rot and corn stalk rot in Gansu in 2009. Plant Prot, 2011, 37(4): 134–137 (in Chinese with English abstract).

[12] 周丹妮, 王晓鸣, 李丹丹, 等. 重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定. 植物保护学报, 2016, 43: 782–788.

Zhou D N, Wang X M, Li D D, et al. Isolation and identification of Fusarium species causing maize ear rot in Chongqing and its vicinity. J Plant Prot, 2016, 43: 782–788 (in Chinese with English abstract).

[13] 杜青, 唐照磊, 李石初, 等. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52: 1895–1907.

Du Q, Tang Z L, Li S C, et al. Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Sci Agric Sin, 2019, 52: 1895–1907 (in Chinese with English abstract).

[14] 柴海燕, 贾娇, 白雪, 等. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性. 中国农业科学, 2023, 56: 64–78.

Chai H Y, Jia J, Bai X, et al. Identification of pathogenic Fusarium spp. causing maize ear rot and susceptibility of some strains to fungicides in Jilin Province. Sci Agric Sin, 2023, 56: 64–78 (in Chinese with English abstract).

[15] 纪武鹏, 王平. 黑龙江农垦玉米穗腐病发生情况调查. 农业科技通讯, 2021, (7): 49–51.

Ji W P, Wang P. Investigation on the occurrence of maize ear rot in Heilongjiang Agricultural Reclamation. Bull Agric Sci Technol, 2021, (7): 49–51 (in Chinese with English abstract).

[16] 王宝宝, 毕四刚, 肖明纲, 等. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163–174.

Wang B B, Bi S G, Xiao M G, et al. Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang province. Acta Pratac Sin, 2020, 29(1): 163–174 (in Chinese with English abstract).

[17] 程璐, 陈家斌, 张艺璇, 等. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647–654.

Cheng L, Chen J B, Zhang Y X, et al. Research comparison of two dominant pathogens on maize ear rot. J Yunnan Univ (Nat Sci Edn), 2022, 44: 647–654 (in Chinese with English abstract).

[18] 石洁, 王振营, 何康来. 黄淮海地区夏玉米病虫害发生趋势与原因分析. 植物保护, 2005, 31(5): 63–65.

Shi J, Wang Z Y, He K L. Changes and occurrence trend of corn diseases and insect pests in Huang-Huai-Hai summer corn regions. Plant Prot, 2005, 31(5): 63–65 (in Chinese with English abstract).

[19] Yao L S, Li Y M, Ma C Y, et al. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535–1551.

[20] 苏玉杰, 刘平丽, 高珂珂, 等. 玉米穗腐病研究进展. 黑龙江农业科学, 2024, (9): 103–113.

Su Y J, Liu P L, Gao K K, et al. Research progress on ear rot in maize. Heilongjiang Agric Sci, 2024, (9): 103–113 (in Chinese with English abstract).

[21] Duan C X, Wang B B, Sun F F, et al. Occurrence of maize ear rot caused by Fusarium fujikuroi in China. Plant Dis, 2020, 104: 587.

[22] 段灿星, 崔丽娜, 夏玉生, 等. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155–2167.

Duan C X, Cui L N, Xia Y S, et al. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155–2167 (in Chinese with English abstract).

[23] 苏爱国, 王帅帅, 段赛茹, 等. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, 2021, 22: 971–978.

Su A G, Wang S S, Duan S R, et al. Identification for ear rot resistance against Fusarium graminearum in maize germplasm. J Plant Genet Resour, 2021, 22: 971–978 (in Chinese with English abstract).

[24] Dinolfo M I, Martínez M, Castañares E, et al. Fusarium in maize during harvest and storage: a review of species involved, mycotoxins, and management strategies to reduce contamination. Eur J Plant Pathol, 2022, 164: 151–166.

[25] 刘素玲, 吴欣, 张百行, 等. 对两种病原菌引起的玉米穗粒腐病的抗性遗传及QTL定位研究可行性分析. 农业科技通讯, 2017(4): 17–19.

Liu S L, Wu X, Zhang B H, et al. Feasibility analysis of resistance inheritance and QTL mapping of maize ear rot caused by two pathogens. Bull Agric Sci Technol, 2017(4): 17–19 (in Chinese with English abstract).

[26] 姜妍, 刘延兴, 李人杰, 等. 密度、施肥、种植方式及杀虫剂处理对玉米穗腐病及伏马毒素污染的影响. 植物保护学报, 2019, 46: 693–698.

Jiang Y, Liu Y X, Li R J, et al. The influences of planting density, fertilizer level, tillage method and insecticide on maize ear rot and contamination of fumonisins. J Plant Prot, 2019, 46: 693–698 (in Chinese with English abstract).

[27] 丁梦军, 杨扬, 孙华, 等. 山东省玉米穗腐病病原菌的分离鉴定及优势种的系统发育分析. 华北农学报, 2019, 34(5): 216–223.

Ding M J, Yang Y, Sun H, et al. Isolation and identification of maize ear rot pathogens and phylogenetic analysis of dominant species in Shandong province. Acta Agric Boreali-Sin, 2019, 34(5): 216–223 (in Chinese with English abstract).

[28] Liao X Y. Physical resistance: a different perspective on maize ear rot resistance. Plant Growth Regul, 2023, 100: 573–576.

[29] Ma P P, Liu E P, Zhang Z R, et al. Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides. Plant Biotechnol J, 2023, 21: 1812–1826.

[30] 黄长玲, 郑长庚. 高赖氨酸玉米对串珠镰刀菌穗腐病抗性遗传的初步研究. 作物学报, 1991, 17: 88–95.

Huang C L, Zheng C G. A preliminary study on the inheritance of the resistance of opaque-2 maize to ear rot caused by Fusarium moniliforme. Acta Agron Sin, 1991, 17: 88–95 (in Chinese with English abstract).

[31] Bottalico A, Perrone G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-grain Cereals in Europe. Mycotoxins in Plant Disease. Dordrecht: Springer Netherlands, 2002. pp 611–624.

[32] Piacentini K C, Savi G D, Pereira M E V, et al. Fungi and the natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chem, 2015, 187: 204–209.

[33] Mahato D K, Devi S, Pandhi S, et al. Occurrence, impact on agriculture, human health, and management strategies of Zearalenone in food and feed: a review. Toxins, 2021, 13: 92.

[34] Musser S M, Plattner R D. Fumonisin Composition in Cultures of Fusarium moniliforme, Fusarium proliferatum, and Fusarium nygami. J Agric Food Chem, 1997, 45: 1169–1173.

[35] Gelderblom W C A, Abel S, Smuts C M, et al. Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environ Health Perspect, 2001, 109: 291.

[36] Rushing B R, Selim M I. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol, 2019, 124: 81–100.

[37] Zhou G F, Li S F, Ma L, et al. Mapping and validation of a stable quantitative trait locus conferring maize resistance to Gibberella ear rot. Plant Dis, 2021, 105: 1984–1991.

[38] Lanubile A, Maschietto V, Borrelli V M, et al. Molecular basis of resistance to Fusarium ear rot in maize. Front Plant Sci, 2017, 8: 1774.

[39] 尹泽超, 王晓芳, 龙艳, 等. 玉米穗腐病抗性鉴定、遗传分析与分子机制. 中国生物工程杂志, 2021, 41(12): 103–115.

Yin Z C, Wang X F, Long Y, et al. Advances on genetic research and mechanism analysis on maize resistance to ear rot. China Biotechnol, 2021, 41(12): 103–115 (in Chinese with English abstract).

[40] Robertson-Hoyt L A, Jines M P, Balint-Kurti P J, et al. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci, 2006, 46: 1734–1743.

[41] Ding J Q, Wang X M, Chander S, et al. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed, 2008, 22: 395–403.

[42] Giomi G M, Kreff E D, Iglesias J, et al. Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica, 2016, 211: 287–294.

[43] Neupane S P, Stagnati L, Dell’Acqua M, et al. Genetic basis of Fusarium ear rot resistance and productivity traits in a heterozygous multi-parent recombinant inbred intercross (RIX) maize population. BMC Plant Biol, 2025, 25: 639.

[44] Feng X J, Xiong H, Zheng D, et al. Identification of Fusarium verticillioides resistance alleles in three maize populations with teosinte gene introgression. Front Plant Sci, 2022, 13: 942397.

[45] Butrón A, Santiago R, Cao A, et al. QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis, 2019, 103: 897–904.

[46] Wen J, Shen Y Q, Xing Y X, et al. QTL mapping of Fusarium ear rot resistance in maize. Plant Dis, 2021, 105: 558–565.

[47] Maschietto V, Colombi C, Pirona R, et al. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol, 2017, 17: 20.

[48] Cao A N, de la Fuente M, Gesteiro N, et al. Genomics and pathways involved in maize resistance to Fusarium ear rot and kernel contamination with fumonisins. Front Plant Sci, 2022, 13: 866478.

[49] Xia Y S, Wang B B, Zhu L H, et al. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA sequencing. Front Plant Sci, 2022, 13: 954546.

[50] Septiani P, Lanubile A, Stagnati L, et al. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep, 2019, 9: 5665.

[51] Chen J F, Ding J Q, Li H M, et al. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed, 2012, 30: 1649–1656.

[52] Chen J F, Shrestha R, Ding J Q, et al. Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3: Gene Genom Genet, 2016, 6: 3803–3815.

[53] Wu Y B, Zhou Z J, Dong C P, et al. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics, 2020, 21: 357.

[54] de Jong G, Pamplona A K A, Von Pinho R G, et al. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. Genomics, 2018, 110: 291–303.

[55] Zila C T, Ogut F, Romay M C, et al. Genome-wide association study of Fusarium ear rot disease in the USA maize inbred line collection. BMC Plant Biol, 2014, 14: 372.

[56] Zila C T, Samayoa L F, Santiago R, et al. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3: Gene Genom Genet, 2013, 3: 2095–2104.

[57] Ayesiga S B, Rubaihayo P, Oloka B M, et al. Genome-wide association study and pathway analysis to decipher loci associated with Fusarium ear rot resistance in tropical maize germplasm. Genet Resour Crop Evol, 2024, 71: 2435–2448.

[58] Liu Y B, Hu G H, Zhang A, et al. Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J, 2021, 9: 325–341.

[59] Stagnati L, Rahjoo V, Samayoa L F, et al. A genome-wide association study to understand the effect of Fusarium verticillioides infection on seedlings of a maize diversity panel. G3: Gene Genom Genet, 2020, 10: 1685–1696.

[60] Han S, Miedaner T, Utz H F, et al. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica, 2017, 214: 6.

[61] Guo Z F, Zou C, Liu X G, et al. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis, 2020, 104: 1725–1735.

[62] 叶靓, 朱叶琳, 裴琳婧, 等. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因. 作物学报, 2024, 50: 2279–2296.

Ye L, Zhu Y L, Pei L J, et al. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis. Acta Agron Sin, 2024, 50: 2279–2296 (in Chinese with English abstract).

[63] Galiano-Carneiro A L, Kessel B, Presterl T, et al. Multi-parent QTL mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize. Euphytica, 2020, 217: 2.

[64] Yuan G S, Chen B F, Peng H, et al. QTL mapping for resistance to ear rot caused by Fusarium graminearum using an IBM Syn10 DH population in maize. Mol Breed, 2020, 40: 91.

[65] Yuan G S, Li Y L, He D D, et al. A combination of QTL mapping and GradedPool-seq to dissect genetic complexity for Gibberella ear rot resistance in maize using an IBM Syn10 DH population. Plant Dis, 2023, 107: 1115–1121.

[66] Zhou G F, Ma L, Zhao C H, et al. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize. Theor Appl Genet, 2024, 137: 222.

[67] Yuan G S, He D D, Shi J X, et al. Genome-wide association study discovers novel germplasm resources and genetic loci with resistance to Gibberella ear rot caused by Fusarium graminearum. Phytopathology, 2023, 113: 1317–1324.

[68] Su A G, Xiao S L, Li Z Y, et al. Multi-omics analysis elucidates phased defense and resource allocation trade-offs in Fusarium resistance of maize. Plant Stress, 2025, 17: 100977.

[69] Pérez-Brito D, Jeffers D, González-De-León D, et al. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, mexico. Agrocencia, 2001, 35, 181–196.

[70] Hao Z D, Lyu D K, Ge Y, et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci, 2020, 6: e251.

[71] Wang Y P, Zhou Z J, Gao J Y, et al. The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Front Plant Sci, 2016, 7: 1654.

[72] Campos-Bermudez V A, Fauguel C M, Tronconi M A, et al. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One, 2013, 8: e61580.

[73] Yuan G S, Shi J H, Zeng C, et al. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium graminearum. BMC Genomics, 2024, 25: 733.

[74] Tran T N, Lanubile A, Marocco A, et al. Transcriptome profiling of eight Zea mays lines identifies genes responsible for the resistance to Fusarium verticillioides. BMC Plant Biol, 2024, 24: 1107.

[75] Lanubile A, Bernardi J, Battilani P, et al. Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiol Mol Plant Pathol, 2012, 77: 52–59.

[76] Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet, 2010, 11: 539–548.

[77] Singla P, Bhardwaj R D, Sharma S, et al. Plant-fungus interaction: a stimulus-response theory. J Plant Growth Regul, 2024, 43: 369–381.

[78] Cheng J J, Fan H, Li L, et al. Genome-wide identification and expression analyses of RPP13-like genes in barley. BioChip J, 2018, 12: 102–113.

[79] Gao Y A, Qu Q, Liu N, et al. Genome identification of the LRR-RLK gene family in maize (Zea mays) and expression analysis in response to Fusarium verticillioides infection. BMC Plant Biol, 2025, 25: 524.

[80] Lanubile A, Bernardi J, Marocco A, et al. Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticillioides. Environ Exp Bot, 2012, 78: 39–46.

[81] Lim G H, Singhal R, Kachroo A, et al. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol, 2017, 55: 505–536.

[82] Gao X Q, Shim W B, Göbel C, et al. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant Microbe Interact, 2007, 20: 922–933.

[83] Battilani P, Lanubile A, Scala V, et al. Oxylipins from both pathogen and host antagonize jasmonic acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of maize. Mol Plant Pathol, 2018, 19: 2162–2176.

[84] Ye J R, Zhong T, Zhang D F, et al. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019, 12: 360–373.

[85] Sampietro D A, Fauguel C M, Vattuone M A, et al. Phenylpropanoids from maize pericarp: resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol, 2013, 135: 105–113.

[86] Liao X Y, Sun J, Li Q Q, et al. ZmSIZ1a and ZmSIZ1b play an indispensable role in resistance against Fusarium ear rot in maize. Mol Plant Pathol, 2023, 24: 711–724.

[87] Ge C X, Tang C X, Zhu Y X, et al. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Gene, 2021, 764: 145078.

[88] Mohammadi M, Anoop V, Gleddie S, et al. Proteomic profiling of two maize inbreds during early Gibberella ear rot infection. PROTEOMICS, 2011, 11: 3675–3684.

[89] Maschietto V, Lanubile A, De Leonardis S, et al. Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. J Plant Physiol, 2016, 200: 53–61.

[90] 渠清, 刘宁, 邹金鹏, 等. 拟轮枝镰孢与玉米籽粒互作的差异基因筛选及代谢通路分析. 中国农业科学, 2023, 56: 1086–1101.

Qu Q, Liu N, Zou J P, et al. Screening of differential genes and analysis of metabolic pathways in the interaction between Fusarium verticillioides and maize kernels. Sci Agric Sin, 2023, 56: 1086–1101 (in Chinese with English abstract).

[91] Gao X Q, Brodhagen M, Isakeit T, et al, Kolomiets M V. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact, 2009, 22: 222–231.

[92] Alemu A, Åstrand J, Montesinos-López O A, et al. Genomic selection in plant breeding: key factors shaping two decades of progress. Mol Plant, 2024, 17: 552–578.

[93] Wang Z, Zhang H Q, Ye W C, et al. Development of a FER0.4K SNP array for genomic predication of Fusarium ear rot resistance in maize. Crop J, 2025, 13: 996–1002.

[94] Holland J B, Marino T P, Manching H C, et al. Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci, 2020, 60: 1863–1875.

[95] Dong G G, Fan Z F. CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. Crop Health, 2024, 2: 2.

[96] Liu C L, Kong M, Zhu J J, et al. Engineering null mutants in ZmFER1 confers resistance to ear rot caused by Fusarium verticillioides in maize. Plant Biotechnol J, 2022, 20: 2045–2047.

[97] 王丽娟, 徐秀德, 刘志恒, 等. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8: 145–148.

Wang L J, Xu X D, Liu Z H, et al. Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. J Plant Genet Resour, 2007, 8: 145–148 (in Chinese with English abstract).

[98] 韩宇琛, 韦翊君, 张震, 等. 玉米种质资源抗两种镰孢穗腐病的大规模鉴定. 植物遗传资源学报, 2024, 25: 1613–1626.

Han Y C, Wei Y J, Zhang Z, et al. Large-scale identification of maize germplasm resources for resistance to ear rot caused by two Fusarium species. J Plant Genet Resour, 2024, 25: 1613–1626 (in Chinese with English abstract).
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[3] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[4] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[5] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[6] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[7] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[8] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[9] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[10] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[11] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[12] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[13] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[14] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
[15] 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!