[1] Naqvi S A H, Farhan M, Ahmad M, et al. Fungicide
resistance in Fusarium species: exploring environmental impacts and sustainable
management strategies. Arch Microbiol, 2025, 207: 31.
[2] Mesterházy Á, Lemmens M, Reid L M. Breeding for resistance to ear rots
caused by Fusarium spp. in maize: a review. Plant Breed, 2012, 131: 1–19.
[3] 宋立秋, 魏利民, 王振营, 等. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487–490.
Song L Q, Wei L M, Wang Z Y, et al.
Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. J Plant Prot, 2009, 36: 487–490 (in Chinese with English abstract).
[4] Duan C X, Qin Z H, Yang Z H, et al. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins,
2016, 8: 186.
[5] Wicklow D T, Rogers K D, Dowd P F, et al. Bioactive metabolites from Stenocarpella
maydis, a stalk and ear rot pathogen of maize. Fungal Biol, 2011, 115: 133–142.
[6] 夏玉生, 郭成, 温胜慧, 等. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61–71.
Xia Y S, Guo C, Wen S H, et al. Identification
of maize germplasm resistant to Fusarium ear rot and Gibberella ear
rot and genetic diversity analysis of resistant lines. J Plant Genet Resour, 2022,
23: 61–71 (in Chinese with English abstract).
[7] 段灿星, 王晓鸣, 宋凤景, 等. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152–2164.
Duan C X, Wang X M, Song F J, et al.
Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015,
48: 2152–2164 (in Chinese with English abstract).
[8] 秦子惠, 任旭, 江凯, 等. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41: 589–596.
Qin Z H, Ren X, Jiang K, et al. Identification
of Fusarium species and F. graminearum species complex causing maize
ear rot in China. J Plant Prot, 2014, 41: 589–596 (in Chinese with English abstract).
[9] 孙华, 郭宁, 石洁, 等. 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017, 47: 577–583.
Sun H, Guo N, Shi J, et al. Characterization
of the maize ear rot pathogens and genetic diversity analysis of dominant species
in Hainan. Acta Phytopathol Sin, 2017, 47: 577–583 (in Chinese with English abstract).
[10] 张小飞, 邹成佳, 崔丽娜, 等. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078–2082.
Zhang X F, Zou
C J, Cui L N, et al. Identification of pathogen causing
maize ear rot and inoculation technique in southwest China. Southwest China J Agric
Sci, 2012, 25: 2078–2082 (in Chinese with English abstract).
[11] 郭满库, 王晓鸣, 何苏琴, 等. 2009年甘肃省玉米穗腐病、茎基腐病的发生危害. 植物保护, 2011, 37(4): 134–137.
Guo M K, Wang X M, He S Q, et al.
Occurrence of maize kernel rot and corn stalk rot in Gansu in 2009. Plant Prot,
2011, 37(4): 134–137 (in Chinese with English abstract).
[12] 周丹妮, 王晓鸣, 李丹丹, 等. 重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定. 植物保护学报, 2016, 43: 782–788.
Zhou D N, Wang
X M, Li D D, et al. Isolation and identification of Fusarium species causing maize ear rot in Chongqing and its vicinity. J Plant Prot, 2016,
43: 782–788 (in Chinese with English abstract).
[13] 杜青, 唐照磊, 李石初, 等. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52: 1895–1907.
Du Q, Tang Z
L, Li S C, et al. Composition of Fusarium species
causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Sci Agric
Sin, 2019, 52: 1895–1907 (in Chinese with English abstract).
[14] 柴海燕, 贾娇, 白雪, 等. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性. 中国农业科学, 2023, 56: 64–78.
Chai H Y, Jia J, Bai X, et al. Identification
of pathogenic Fusarium spp. causing maize ear rot and susceptibility of some
strains to fungicides in Jilin Province. Sci Agric Sin, 2023, 56: 64–78 (in Chinese
with English abstract).
[15] 纪武鹏, 王平. 黑龙江农垦玉米穗腐病发生情况调查. 农业科技通讯, 2021, (7): 49–51.
Ji W P, Wang P. Investigation on the
occurrence of maize ear rot in Heilongjiang Agricultural Reclamation. Bull Agric
Sci Technol, 2021, (7): 49–51 (in Chinese with English abstract).
[16] 王宝宝, 毕四刚, 肖明纲, 等. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163–174.
Wang B B, Bi S G, Xiao M G, et al.
Isolation and identification of pathogenic Fusarium spp. causing maize ear
rot and analysis of their toxin-producing genotype in Heilongjiang province. Acta
Pratac Sin, 2020, 29(1): 163–174 (in Chinese with English abstract).
[17] 程璐, 陈家斌, 张艺璇, 等. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647–654.
Cheng L, Chen J B, Zhang Y X, et al.
Research comparison of two dominant pathogens on maize ear rot. J Yunnan
Univ (Nat Sci Edn), 2022, 44: 647–654 (in Chinese with English abstract).
[18] 石洁, 王振营, 何康来. 黄淮海地区夏玉米病虫害发生趋势与原因分析. 植物保护, 2005, 31(5): 63–65.
Shi J, Wang Z Y, He K L. Changes and
occurrence trend of corn diseases and insect pests in Huang-Huai-Hai summer corn
regions. Plant Prot, 2005, 31(5): 63–65 (in Chinese with English abstract).
[19] Yao L S, Li Y M, Ma C Y, et al. Combined genome-wide association study
and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535–1551.
[20] 苏玉杰, 刘平丽, 高珂珂, 等. 玉米穗腐病研究进展. 黑龙江农业科学, 2024, (9): 103–113.
Su Y J, Liu P
L, Gao K K, et al. Research progress on ear rot in maize.
Heilongjiang Agric Sci, 2024, (9): 103–113 (in Chinese with English abstract).
[21] Duan C X, Wang B B, Sun F F, et al. Occurrence of maize ear rot caused
by Fusarium fujikuroi in China. Plant Dis, 2020, 104: 587.
[22] 段灿星, 崔丽娜, 夏玉生, 等. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155–2167.
Duan C X, Cui
L N, Xia Y S, et al. Precise characterization and analysis
of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155–2167 (in Chinese with English abstract).
[23] 苏爱国, 王帅帅, 段赛茹, 等. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, 2021, 22: 971–978.
Su A G, Wang S S, Duan S R, et al.
Identification for ear rot resistance against Fusarium graminearum in maize
germplasm. J Plant Genet Resour, 2021, 22: 971–978 (in Chinese with English abstract).
[24] Dinolfo M I, Martínez M, Castañares E, et al. Fusarium in maize during
harvest and storage: a review of species involved, mycotoxins, and management strategies
to reduce contamination. Eur J Plant Pathol, 2022, 164: 151–166.
[25] 刘素玲, 吴欣, 张百行, 等. 对两种病原菌引起的玉米穗粒腐病的抗性遗传及QTL定位研究可行性分析. 农业科技通讯, 2017(4): 17–19.
Liu S L, Wu X, Zhang B H, et al. Feasibility
analysis of resistance inheritance and QTL mapping of maize ear rot caused by two
pathogens. Bull Agric Sci Technol, 2017(4): 17–19 (in Chinese with English abstract).
[26] 姜妍, 刘延兴, 李人杰, 等. 密度、施肥、种植方式及杀虫剂处理对玉米穗腐病及伏马毒素污染的影响. 植物保护学报, 2019, 46: 693–698.
Jiang Y, Liu
Y X, Li R J, et al. The influences of planting density,
fertilizer level, tillage method and insecticide on maize ear rot and contamination
of fumonisins. J Plant Prot, 2019, 46: 693–698 (in Chinese with English abstract).
[27] 丁梦军, 杨扬, 孙华, 等. 山东省玉米穗腐病病原菌的分离鉴定及优势种的系统发育分析. 华北农学报, 2019, 34(5): 216–223.
Ding M J, Yang Y, Sun H, et al. Isolation
and identification of maize ear rot pathogens and phylogenetic analysis of dominant
species in Shandong province. Acta Agric Boreali-Sin, 2019, 34(5): 216–223 (in Chinese
with English abstract).
[28] Liao X Y. Physical resistance: a different perspective on maize ear rot
resistance. Plant Growth Regul, 2023, 100: 573–576.
[29] Ma P P, Liu E P, Zhang Z R, et al. Genetic variation in ZmWAX2 confers
maize resistance to Fusarium verticillioides. Plant Biotechnol J, 2023, 21:
1812–1826.
[30] 黄长玲, 郑长庚. 高赖氨酸玉米对串珠镰刀菌穗腐病抗性遗传的初步研究. 作物学报, 1991, 17: 88–95.
Huang C L, Zheng C G. A preliminary
study on the inheritance of the resistance of opaque-2 maize to ear rot caused by Fusarium moniliforme. Acta Agron Sin, 1991, 17: 88–95 (in Chinese with English
abstract).
[31] Bottalico A, Perrone G. Toxigenic Fusarium Species and Mycotoxins
Associated with Head Blight in Small-grain Cereals in Europe. Mycotoxins in Plant
Disease. Dordrecht: Springer Netherlands, 2002. pp 611–624.
[32] Piacentini K C, Savi G D, Pereira M E V, et al. Fungi and the natural
occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chem, 2015, 187: 204–209.
[33] Mahato D K, Devi S, Pandhi S, et al. Occurrence, impact on agriculture,
human health, and management strategies of Zearalenone in food and feed: a review.
Toxins, 2021, 13: 92.
[34] Musser S M, Plattner R D. Fumonisin Composition in Cultures of Fusarium moniliforme, Fusarium proliferatum, and Fusarium nygami.
J Agric Food Chem, 1997, 45: 1169–1173.
[35] Gelderblom W C A, Abel S, Smuts C M, et al. Fumonisin-induced hepatocarcinogenesis:
mechanisms related to cancer initiation and promotion. Environ Health Perspect,
2001, 109: 291.
[36] Rushing B R, Selim M I. Aflatoxin B1: a review on metabolism, toxicity,
occurrence in food, occupational exposure, and detoxification methods. Food Chem
Toxicol, 2019, 124: 81–100.
[37] Zhou G F, Li S F, Ma L, et al. Mapping and validation of a stable quantitative
trait locus conferring maize resistance to Gibberella ear rot. Plant Dis, 2021, 105: 1984–1991.
[38] Lanubile A, Maschietto V, Borrelli V M, et al. Molecular basis of resistance to Fusarium ear rot in
maize. Front Plant Sci, 2017, 8: 1774.
[39] 尹泽超, 王晓芳, 龙艳, 等. 玉米穗腐病抗性鉴定、遗传分析与分子机制. 中国生物工程杂志, 2021, 41(12): 103–115.
Yin Z C, Wang X F, Long Y, et al.
Advances on genetic research and mechanism analysis on maize resistance to ear rot.
China Biotechnol, 2021, 41(12): 103–115 (in Chinese with English abstract).
[40] Robertson-Hoyt L A, Jines M P, Balint-Kurti P J, et al. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci, 2006, 46: 1734–1743.
[41] Ding J Q, Wang X M, Chander S, et al. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed, 2008, 22: 395–403.
[42] Giomi G M, Kreff E D, Iglesias J, et al. Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica, 2016, 211: 287–294.
[43] Neupane S P, Stagnati L, Dell’Acqua M, et al. Genetic basis of Fusarium ear rot resistance and productivity
traits in a heterozygous multi-parent recombinant inbred intercross (RIX) maize
population. BMC Plant Biol, 2025, 25: 639.
[44] Feng X J, Xiong H, Zheng D, et al. Identification of Fusarium verticillioides resistance alleles in three maize populations with teosinte gene introgression.
Front Plant Sci, 2022, 13: 942397.
[45] Butrón A, Santiago R, Cao A, et al. QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population.
Plant Dis, 2019, 103: 897–904.
[46] Wen J, Shen Y Q, Xing Y X, et al. QTL mapping of Fusarium ear rot
resistance in maize. Plant Dis, 2021,
105: 558–565.
[47] Maschietto V, Colombi C, Pirona R, et al. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol, 2017, 17: 20.
[48] Cao A N, de la Fuente M, Gesteiro N, et al. Genomics and pathways involved
in maize resistance to Fusarium ear rot and kernel contamination with fumonisins. Front Plant Sci, 2022, 13: 866478.
[49] Xia Y S, Wang B B, Zhu L H, et al. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA sequencing. Front Plant
Sci, 2022, 13: 954546.
[50] Septiani P, Lanubile A, Stagnati L, et al. Unravelling the genetic basis
of Fusarium seedling rot resistance in the MAGIC maize population: novel
targets for breeding. Sci Rep, 2019, 9: 5665.
[51] Chen J F, Ding J Q, Li H M, et al. Detection and verification of quantitative
trait loci for resistance to Fusarium ear rot in maize. Mol Breed, 2012,
30: 1649–1656.
[52] Chen J F, Shrestha R, Ding J Q, et al. Genome-wide association study and
QTL mapping reveal genomic loci associated with Fusarium ear rot resistance
in tropical maize germplasm. G3: Gene Genom Genet, 2016, 6: 3803–3815.
[53] Wu Y B, Zhou Z J, Dong C P, et al. Linkage mapping and genome-wide association
study reveals conservative QTL and candidate genes for Fusarium rot resistance
in maize. BMC Genomics, 2020, 21: 357.
[54] de Jong G, Pamplona A K A, Von Pinho R G, et al. Genome-wide association
analysis of ear rot resistance caused by Fusarium verticillioides in maize.
Genomics, 2018, 110: 291–303.
[55] Zila C T, Ogut F, Romay M C, et al. Genome-wide association study of Fusarium ear rot disease
in the USA maize inbred line collection. BMC Plant Biol, 2014, 14: 372.
[56] Zila C T, Samayoa L F, Santiago R, et al. A genome-wide association study
reveals genes associated with Fusarium ear rot resistance in a maize core
diversity panel. G3: Gene Genom Genet, 2013, 3: 2095–2104.
[57] Ayesiga S B, Rubaihayo P, Oloka B M, et al. Genome-wide association study
and pathway analysis to decipher loci associated with Fusarium ear rot resistance
in tropical maize germplasm. Genet Resour Crop Evol, 2024, 71: 2435–2448.
[58] Liu Y B, Hu G H, Zhang A, et al. Genome-wide association study and genomic
prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J, 2021, 9: 325–341.
[59] Stagnati L, Rahjoo V, Samayoa L F, et al. A genome-wide association study to understand the effect of Fusarium verticillioides infection on seedlings of a maize diversity panel.
G3: Gene Genom Genet, 2020, 10: 1685–1696.
[60] Han S, Miedaner T, Utz H F, et al. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program.
Euphytica, 2017, 214: 6.
[61] Guo Z F, Zou C, Liu X G, et al. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic
prediction. Plant Dis, 2020, 104: 1725–1735.
[62] 叶靓, 朱叶琳, 裴琳婧, 等. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因. 作物学报, 2024, 50: 2279–2296.
Ye L, Zhu Y L, Pei L J, et al. Screening
candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis. Acta Agron Sin, 2024, 50:
2279–2296 (in Chinese with English abstract).
[63] Galiano-Carneiro A L, Kessel B, Presterl T,
et al. Multi-parent QTL mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize. Euphytica, 2020, 217: 2.
[64] Yuan G S, Chen B F, Peng H, et al. QTL mapping for resistance to ear rot
caused by Fusarium graminearum using an IBM Syn10 DH population in maize.
Mol Breed, 2020, 40: 91.
[65] Yuan G S, Li Y L, He D D, et al. A combination of QTL mapping and GradedPool-seq
to dissect genetic complexity for Gibberella ear rot resistance in maize
using an IBM Syn10 DH population. Plant Dis, 2023, 107: 1115–1121.
[66] Zhou G F, Ma L, Zhao C H, et al. Genome-wide association study and molecular
marker development for susceptibility to Gibberella ear rot in maize. Theor
Appl Genet, 2024, 137: 222.
[67] Yuan G S, He D D, Shi J X, et al. Genome-wide association study discovers
novel germplasm resources and genetic loci with resistance to Gibberella ear rot caused by Fusarium graminearum. Phytopathology, 2023, 113: 1317–1324.
[68] Su A G, Xiao S L, Li Z Y, et al. Multi-omics analysis elucidates phased
defense and resource allocation trade-offs in Fusarium resistance of maize. Plant Stress, 2025, 17: 100977.
[69] Pérez-Brito D, Jeffers D, González-De-León
D, et al. QTL mapping of Fusarium moniliforme ear rot
resistance in highland maize, mexico. Agrocencia, 2001, 35, 181–196.
[70] Hao Z D, Lyu D K, Ge Y, et al. RIdeogram: drawing SVG graphics to visualize
and map genome-wide data on the idiograms. PeerJ Comput Sci, 2020, 6: e251.
[71] Wang Y P, Zhou Z J, Gao J Y, et al. The mechanisms of maize resistance
to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Front
Plant Sci, 2016, 7: 1654.
[72] Campos-Bermudez V A, Fauguel C M, Tronconi M A, et al. Transcriptional
and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One, 2013, 8: e61580.
[73] Yuan G S, Shi J H, Zeng C, et al. Integrated analysis of transcriptomics
and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium graminearum. BMC Genomics, 2024, 25: 733.
[74] Tran T N, Lanubile A, Marocco A, et al. Transcriptome profiling of eight Zea mays lines identifies
genes responsible for the resistance to Fusarium verticillioides. BMC Plant
Biol, 2024, 24: 1107.
[75] Lanubile A, Bernardi J, Battilani P, et al. Resistant and susceptible
maize genotypes activate different transcriptional responses against Fusarium
verticillioides. Physiol Mol Plant Pathol, 2012, 77: 52–59.
[76] Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of
plant-pathogen interactions. Nat Rev Genet, 2010, 11: 539–548.
[77] Singla P, Bhardwaj R D, Sharma S, et al. Plant-fungus interaction: a stimulus-response
theory. J Plant Growth Regul, 2024, 43: 369–381.
[78] Cheng J J, Fan H, Li L, et al. Genome-wide identification and expression
analyses of RPP13-like genes in barley. BioChip J, 2018, 12: 102–113.
[79] Gao Y A, Qu Q, Liu N, et al. Genome identification of the LRR-RLK
gene family in maize (Zea mays) and expression analysis in response to Fusarium verticillioides infection. BMC Plant Biol, 2025, 25: 524.
[80] Lanubile A, Bernardi J, Marocco A, et al. Differential activation of defense
genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium
verticillioides. Environ Exp Bot, 2012, 78: 39–46.
[81] Lim G H, Singhal R, Kachroo A, et al. Fatty acid- and lipid-mediated signaling
in plant defense. Annu Rev Phytopathol, 2017, 55: 505–536.
[82] Gao X Q, Shim W B, Göbel C, et al. Disruption of a maize 9-lipoxygenase
results in increased resistance to fungal pathogens and reduced levels of contamination
with mycotoxin fumonisin. Mol Plant Microbe Interact, 2007, 20: 922–933.
[83] Battilani P, Lanubile A, Scala V, et al. Oxylipins from both pathogen and host antagonize jasmonic
acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of maize. Mol Plant Pathol, 2018, 19: 2162–2176.
[84] Ye J R, Zhong T, Zhang D F, et al. The auxin-regulated protein ZmAuxRP1
coordinates the balance between root growth and stalk rot disease resistance in
maize. Mol Plant, 2019, 12: 360–373.
[85] Sampietro D A, Fauguel C M, Vattuone M A, et al.
Phenylpropanoids from maize pericarp: resistance factors to
kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol, 2013, 135: 105–113.
[86] Liao X Y, Sun J, Li Q Q, et al. ZmSIZ1a and ZmSIZ1b play an indispensable
role in resistance against Fusarium ear rot in maize. Mol Plant Pathol, 2023,
24: 711–724.
[87] Ge C X, Tang C X, Zhu Y X, et al. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Gene, 2021, 764: 145078.
[88] Mohammadi M, Anoop V, Gleddie S, et al. Proteomic profiling of two maize
inbreds during early Gibberella ear rot infection. PROTEOMICS, 2011, 11: 3675–3684.
[89] Maschietto V, Lanubile A, De Leonardis S, et al.
Constitutive expression of pathogenesis-related proteins and
antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides.
J Plant Physiol, 2016, 200: 53–61.
[90] 渠清, 刘宁, 邹金鹏, 等. 拟轮枝镰孢与玉米籽粒互作的差异基因筛选及代谢通路分析. 中国农业科学, 2023, 56: 1086–1101.
Qu Q, Liu N,
Zou J P, et al. Screening of differential genes and
analysis of metabolic pathways in the interaction between Fusarium verticillioides and maize kernels. Sci Agric Sin, 2023, 56: 1086–1101 (in Chinese with English
abstract).
[91] Gao X Q, Brodhagen M, Isakeit T, et al, Kolomiets M V. Inactivation of
the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact, 2009, 22: 222–231.
[92] Alemu A, Åstrand J, Montesinos-López O A, et al.
Genomic selection in plant breeding: key factors shaping two
decades of progress. Mol Plant, 2024, 17: 552–578.
[93] Wang Z, Zhang H Q, Ye W C, et al. Development of a FER0.4K SNP array for
genomic predication of Fusarium ear rot resistance in maize. Crop J, 2025,
13: 996–1002.
[94] Holland J B, Marino T P, Manching H C, et al. Genomic prediction for resistance
to Fusarium ear rot and fumonisin contamination in maize. Crop Sci, 2020,
60: 1863–1875.
[95] Dong G G, Fan Z F. CRISPR/Cas-mediated germplasm improvement and new strategies
for crop protection. Crop Health, 2024, 2: 2.
[96] Liu C L, Kong M, Zhu J J, et al. Engineering null mutants in ZmFER1 confers
resistance to ear rot caused by Fusarium verticillioides in maize. Plant
Biotechnol J, 2022, 20: 2045–2047.
[97] 王丽娟, 徐秀德, 刘志恒, 等. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8: 145–148.
Wang L J, Xu X D, Liu Z H, et al.
Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. J Plant Genet Resour, 2007, 8: 145–148 (in Chinese with English abstract).
[98] 韩宇琛, 韦翊君, 张震, 等. 玉米种质资源抗两种镰孢穗腐病的大规模鉴定. 植物遗传资源学报, 2024, 25: 1613–1626.
Han Y C, Wei Y J, Zhang Z, et
al. Large-scale identification of maize germplasm resources for resistance to ear
rot caused by two Fusarium species. J Plant Genet Resour, 2024, 25:
1613–1626 (in Chinese with English abstract). |