欢迎访问作物学报,今天是

作物学报

• •    

高产高油高油酸花生品种的生长发育及干物质生产特征

金欣欣,宋亚辉,苏俏,杨永庆,王瑾*   

  1. 河北省农林科学院粮油作物研究所 / 河北省作物遗传育种重点实验室,河北石家庄050035
  • 收稿日期:2025-06-19 修回日期:2025-09-10 接受日期:2025-09-10 网络出版日期:2025-09-18
  • 通讯作者: 王瑾, E-mail: wangjinnky@163.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13), 河北省现代农业产业技术体系建设专项(HBCT2024040101, HBCT2024040204), 河北省花生现代种业科技创新团队项目(21326316D)和河北省农林科学院创新工程项目(2022KJCXZX-LYS-11)资助。

Growth and dry matter production characteristics of high-yielding, and high-oil, and high oleic acid peanut varieties

JIN Xin-Xin,SONG Ya-Hui,SU Qiao,YANG Yong-Qing,WANG Jin*   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
  • Received:2025-06-19 Revised:2025-09-10 Accepted:2025-09-10 Published online:2025-09-18
  • Contact: 王瑾, E-mail: wangjinnky@163.com
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-13), the Hebei Agriculture Research System (HBCT2024040101, HBCT2024040204), the Science and Technology Innovation Team of Modern Peanut Seed Industry (21326316D), and the Talents Construction Project of Science and Technology Innovation of Hebei Academy of Agriculture and Forestry Sciences (2022KJCXZX-LYS-11).

摘要:

连续2年对冀花915、冀花19号、冀花5213个高油酸花生品种的生长发育、干物质积累、产量构成、油脂积累等物质生产特征进行系统比较研究,旨在为解析花生高产高油高油酸的形成机制提供理论依据。结果表明,3个品种的产量表现为冀花915>冀花19号>冀花521。冀花915植株高度较矮(40 cm),叶面积指数峰值适宜(5.6),地上部群体结构合理;荚果形成后,群体生长率、净同化速率、荚果生长率以及荚果生物量的分配比例(48.75%)均显著高于其他2个品种。冀花521在生育期内叶面积指数峰值大,光合势高,但群体结构过大导致干物质积累向荚果分配比例小造成产量较低。冀花19号各项指标居中。油分、油酸含量表现为冀花915冀花19>冀花521。冀花915和冀花19号的油分、油酸最大积累速率显著高于冀花521,但快速积累期持续时间相对较短。总之,冀花915具有群体质量优、干物质积累向荚果分配多、油分及油酸积累速率高等突出优势,是其高产高油高油酸的重要原因。本研究结果可为花生新品种培育及制定高产高效栽培技术提供理论依据。

关键词: 高油酸, 花生, 产量, 干物质积累, 油分积累

Abstract:

This study compared the growth dynamics, dry matter accumulation, yield components, and oil accumulation characteristics of three high-oleic-acid peanut varieties—Jihua 915, Jihua 19, and Jihua 521—during the 2023 and 2024 growing seasons. The aim was to provide a theoretical basis for understanding the mechanisms underlying high yield, high oil content, and high oleic acid levels. Results showed that yield followed the order: Jihua 915 > Jihua 19 > Jihua 521. Jihua 915 exhibited a shorter plant height (< 40 cm), an optimal peak leaf area index (about 5.6), and a well-structured above-ground canopy. After pod initiation, Jihua 915 also demonstrated significantly higher crop growth rate, net assimilation rate, pod growth rate, and pod dry matter distribution ratio (48.75%) compared to the other two varieties. Although Jihua 521 had a large leaf area index and high photosynthetic potential during the growth period, its excessively dense canopy structure resulted in a lower allocation of dry matter to pods and reduced yield. Jihua 19 showed intermediate performance across all traits. In terms of oil and oleic acid contentJihua 915 and Jihua 19 were comparable and both superior to Jihua 521. The peak accumulation rates of oil and oleic acid in Jihua 915 and Jihua 19 were significantly higher than those in Jihua 521, although their accumulation periods were relatively short. The superior performance of Jihua 915—characterized by optimal canopy architecture, efficient dry matter allocation to pods, and rapid accumulation of oil and oleic acid—was a key contributor to its high yield and quality. The results can provide theoretical basis for breeding new peanut varieties and formulating cultivation technique.

Key words: high oleic acid, peanut, yield, dry matter accumulation, oil accumulation

[1]中华人民共和国国家统计局. [2025-03-01], https://data.stats.gov.cn/easyquery.htm cn=C01.

National Bureau of Statistics, the People’s Republic of China. [2025-03-01], https://data.stats.gov.cn/easyquery.htm cn=C01 (in Chinese).

[2]鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究. 作物学报, 2024, 50: 969980.

Lu Q, Liu H, Li H F, Wang R F, Huang L, Liang X Q, Chen X P, Hong Y B, Liu H Y, Li S X. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.). Acta Agron Sin, 2024, 50: 969–980 (in Chinese with English abstract).

[3]廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42(2): 161166.

Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42(2): 161–166 (in Chinese with English abstract).

[4]陈四龙, 程增书, 宋亚辉, 王瑾, 刘义杰, 张朋娟, 李玉荣. 高产高油花生品种的光合与物质生产特征. 作物学报, 2019, 45: 276288.

Chen S L, Cheng Z S, Song Y H, Wang J, Liu Y J, Zhang P J, Li Y R. Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content. Acta Agron Sin, 2019, 45: 276–288 (in Chinese with English abstract).

[5]辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响. 作物学报, 2025, 51: 221232.

Xin M H, Mi Y D, Wang G P, Li X F, Li Y B, Dong H L, Han Y C, Feng L. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton. Acta Agron Sin, 2025, 51: 221–232 (in Chinese with English abstract).

[6]李利利, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 不同株高夏玉米品种同化物积累转运与分配特性. 作物学报, 2012, 38: 10801087.

Li L L, Zhang J W, Dong S T, Liu P, Zhao B, Yang J S. Characteristics of accumulation, transition and distribution of assimilate in summer maize varieties with different plant height. Acta Agron Sin, 2012, 38: 1080–1087 (in Chinese with English abstract).

[7]陈鸽, 谷雨, 文炯, 傅岳峰, 何兮, 李薇, 周峻宇, 刘琼峰, 吴海勇. 冬闲杂草还田对水稻光合物质生产和产量的影响. 中国农业科学, 2025, 58: 647659.

Chen G, Gu Y, Wen J, Fu Y F, He X, Li W, Zhou J Y, Liu Q F, Wu H Y. Effects of fallow weeds returning to the field on photosynthetic matter production and yield of rice. Sci Agric Sin, 2025,58: 647–659 (in Chinese with English abstract).

[8]魏海燕, 凌启鸿, 张洪程, 郭文善, 杨建昌, 陈德华, 冷锁虎, 陆卫平, 邢志鹏. 作物群体质量及其关键调控技术. 扬州大学学报(农业与生命科学版), 2018, 39(2): 19.

Wei H Y, Ling Q H, Zhang H C, Guo W S, Yang J C, Chen D H, Leng S H, Lu W P, Xing Z P. The quality of crop population and its key regulation technology. J Yangzhou Univ (Agric Life Sci Edn), 2018, 39(2): 1–9 (in Chinese with English abstract).

[9]陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 11531160.

Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153–1160 (in Chinese with English abstract).

[10]王志刚, 高聚林, 张宝林, 罗瑞林, 杨恒山, 孙继颖, 于晓芳, 苏治军, 胡树平. 内蒙古平原灌区高产春玉米(15 t hm−2以上)产量性能及增产途径. 作物学报, 2012, 38: 13181327.

Wang Z G, Gao J L, Zhang B L, Luo R L, Yang H S, Sun J Y, Yu X F, Su Z J, Hu S P. Productivity performance of high-yield spring maize and approaches to increase grain yield (above 15 t hm2) in irrigated plain of Inner Mongolia. Acta Agron Sin, 2012, 38: 1318–1327 (in Chinese with English abstract).

[11]吴桂成, 张洪程, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, . 南方粳型超级稻物质生产积累及超高产特征的研究. 作物学报, 2010, 36: 19211930.

Wu G C, Zhang H C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Xu Z J, Qian Z H, et al. Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in South China. Acta Agron Sin, 2010, 36: 1921–1930 (in Chinese with English abstract).

[12]杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 13361345.

Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season Japonica rice. Sci Agric Sin, 2006, 39: 1336–1345 (in Chinese with English abstract).

[13]李国卫, 秦圣豪, 刘译阳, 张佳蕾, 韩燕, 万书波. 花生株型相关性状研究进展中国油料作物学报, 2020, 42: 934939.

Li G W, Qin S H, Liu Y Y, Zhang J L, Han Y, Wan S B. Advances in plant architecture studies of peanut. Chin J Oil Crop Sci, 2020, 42: 934–939 (in Chinese with English abstract).

[14]王才斌, 郑亚萍, 成波, 沙继锋, 姜振祥. 花生超高产群体特征与光能利用研究. 华北农学报, 2004, 19(2): 4043.

Wang C B, Zheng Y P, Cheng B, Sha J F, Jiang Z X. The canopy characters and efficiency for solar energy utilization of supper high yielding peanut. Acta Agric Boreali-Sin, 2004, 19(2): 40–43 (in Chinese with English abstract).

[15] 吴正锋, 王才斌, 刘俊华, 万书波, 江荣风. 不同产量水平花生群体特征研究. 花生学报, 2013, 42(4): 713.

Wu Z F, Wang C B, Liu J H, Wan S B, Jiang R F. The population characteristics of peanut with different yield levels. J Peanut Sci, 2013, 42(4): 7–13 (in Chinese with English abstract).

[16]王建国, 耿耘, 杨佃卿, 郭峰, 杨莎, 李新国, 唐朝辉, 张佳蕾, 万书波. 单粒精播对中、高产旱地花生群体质量及养分利用的影响. 作物学报, 2022, 48: 28662878.

Wang J G, Geng Y, Yang D Q, Guo F, Yang S, Li X G, Tang Z H, Zhang J L, Wan S B. Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands. Acta Agron Sin, 2022, 48: 2866–2878 (in Chinese with English abstract).

[17]张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 37573766.

Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757–3766 (in Chinese with English abstract).

[18]王小纯, 马新明, 常思敏, 汤丰收. 不同花生品种荚果发育及有机物积累动态研究. 中国油料作物学报, 2003, 25: 3740.

Wang X C, Ma X M, Chang S M, Tang F S. Effects of electric field treatment on seed germination and enzyme activities under drought stress in oil sunflower seeds. Chin J Oil Crop Sci, 2003, 25: 37–40 (in Chinese with English abstract).

[19]张佳蕾, 顾学花, 杨传婷, 郭峰, 李向东, 万书波. 不同品质类型花生籽仁脂肪酸积累规律研究. 花生学报, 2016, 45(2): 33–37.

Zhang J L, Gu X H, Yang C T, Guo F, Li X D, Wan S B. Regularity of fatty acids accumulation in different quality types of peanut seed kernel. J Peanut Sci, 2016, 45(2): 33–37 (in Chinese with English abstract).

[20]陈四龙, 李玉荣, 徐桂真, 程增书. 不同高油花生品种()油分积累特性的模拟研究. 作物学报, 2008, 34: 142149.

Chen S L, Li Y R, Xu G Z, Cheng Z S. Simulation on oil accumulation characteristics in different high oil peanut varieties. Acta Agron Sin, 2008, 34: 142–149 (in Chinese with English abstract).

[21]迟晓元, 郝翠翠, 潘丽娟, 陈娜, 陈明娜, 王通, 王冕, 杨珍, 梁成伟, 禹山林. 不同花生品种脂肪酸组成及其积累规律的研究. 花生学报, 2016, 45(3): 3236.

Chi X Y, Hao C C, Pan L J, Chen N, Chen M N, Wang T, Wang M, Yang Z, Liang C W, Yu S L. Fatty acid accumulation pattern in different types of peanut. J Peanut Sci, 2016, 45(3): 32–36 (in Chinese with English abstract).

[22]梁煜莹, 张加羽, 姜骁, 王露欢, 张晓吉, 刘齐妹, 薛云云, 迟晓元, 白冬梅. 花生品质与气候环境的关系研究. 植物遗传资源学报, 2024, 25: 227–244.

Liang Y Y, Zhang J Y, Jiang X, Wang L H, Zhang X J, Liu Q M, Xue Y Y, Chi X Y, Bai D M. Study on the relationship between peanut quality and climatic environments. J Plant Genet Resour, 2024, 25: 227–244 (in Chinese with English abstract).

[23]李丽, 崔顺立, 穆国俊, 杨鑫雷, 侯名语, 李文平, 刘富强, 刘立峰. 高油酸花生遗传改良研究进展. 中国油料作物学报, 2019, 41: 986997.

Li L, Cui S L, Mu G J, Yang X L, Hou M Y, Li W P, Liu F Q, Liu L F. Research progress of peanut breeding with high oleic acid. Chin J Oil Crop Sci, 2019, 41: 986–997 (in Chinese with English abstract).

[24]高伟, 吕登宇, 苗利娟, 石磊, 黄冰艳, 张毛宁, 房元瑾, 王娟, 齐飞艳, 董文召, . 高油酸花生品种脂肪及脂肪酸积累动态分析. 中国油料作物学报, 2023, 45: 629636.

Gao W, Lyu D Y, Miao L J, Shi L, Huang B Y, Zhang M N, Fang Y J, Wang J, Qi F Y, Dong W Z, et al. Dynamic analysis of fat and fatty acid accumulation in peanut varieties with high oleic acid. Chin J Oil Crop Sci, 2023, 45: 629–636 (in Chinese with English abstract).

[25]苏俏, 杨永庆, 李玉荣, 程增书, 宋亚辉, 金欣欣, 王瑾. 高油酸花生籽仁发育过程中脂肪酸动态变化分析. 河北农业大学学报, 2023, 46(4): 17.

Su Q, Yang Y Q, Li Y R, Cheng Z S, Song Y H, Jin X X, Wang J. Dynamic changes of fatty acid during kernel development in high oleic acid peanut. J Hebei Agric Univ, 2023, 46(4): 1–7 (in Chinese with English abstract).

[26]张佳蕾, 王建国, 李元高, 杨佃卿, 万书波. 花生高产攻关实收单产12,982 kg hm-2技术分析. 中国油料作物学报, 2024, 46: 443449.

Zhang J L, Wang J G, Li Y G, Yang D Q, Wan S B. Technical analysis of peanut high-yield development tackling with 12,982 kg hm−2. Chin J Oil Crop Sci, 2024, 46: 443–449 (in Chinese with English abstract).

[27]邓陈威, 雷亚柯, 张建航, 展世杰, 王伟杰, 杨亚洲, 贾朝阳. 高油酸花生育种研究进展. 安徽农业科学, 2024, 52(13): 1518.

Deng C W, Lei Y K, Zhang J H, Zhan S J, Wang W J, Yang Y Z, Jia C Y. Research progress in peanut breeding with high oleic acid. J Anhui Agric Sci, 2024, 52(13): 15–18 (in Chinese with English abstract).

[28]丁迪, 刘涵, 汪江涛, 朱晨旭, 王琦, 刘娟, 焦念元. 间作、轮作对连作花生植株生长、产量及品质的改善效应. 华北农学报, 2024, 39(6): 115124.

Ding D, Liu H, Wang J T, Zhu C X, Wang Q, Liu J, Jiao N Y. Improving effects of intercropping and rotation on plant growth, yield and quality of continuous cropping peanut. Acta Agric Boreali-Sin, 2024, 39(6): 115–124 (in Chinese with English abstract).

[29]张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展. 作物学报, 2024, 50: 529542.

Zhang Y, Wang Z H, Huai D X, Liu N, Jiang H F, Liao B S, Lei Y. Research progress on genetic basis and QTL mapping of oil content in peanut seed. Acta Agron Sin, 2024, 50: 529–542 (in Chinese with English abstract).

[30]郑亚萍, 孔显民, 成波, 王华松, 刘歧茂, 张伟, 姜振祥. 花生高产群体特征研究. 花生学报, 2003, 32(2): 2125.

Zheng Y P, Kong X M, Cheng B, Wang H S, Liu Q M, Zhang W, Jiang Z X. Characters of high yielding peanut canopy. J Peanut Sci, 2003, 32(2): 21–25 (in Chinese with English abstract).

[31]王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 16661679.

Wang J G, Zhang J L, Guo F, Tang Z H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut. Acta Agron Sin, 2021, 47: 1666–1679 (in Chinese with English abstract)

[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[3] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[4] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[10] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[11] 万书波, 张佳蕾, 高华鑫, 王才斌. 中国花生高产栽培研究进展与展望[J]. 作物学报, 2025, 51(7): 1703-1711.
[12] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[13] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[14] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[15] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!