• •
许睿1,何妙华1,王昊1,李卫2,任杰2,夏志强1,*
XU Rui1,HE Miao-Hua1,WANG Hao1,LI Wei2,REN Jie2,XIA Zhi-Qiang1,*
摘要:
辐射诱变育种在大豆品种改良中被广泛使用,但辐射诱变的分子机制尚未完全阐明。空间转录组学作为近几年在各个生物研究领域中的热门技术,能够解析基因表达的空间异质性,然而其在辐射诱变大豆种胚研究中的应用尚未见报道。本研究利用空间转录组技术分析X射线辐射处理的大豆种胚基因表达特征及其空间调控模式。结果显示,未处理和辐射处理的大豆种胚共划分为13个细胞簇(Cluster),并成功构建了其空间转录组图谱。差异表达分析鉴定出各细胞簇中的关键功能基因,包括参与DNA的合成和修复的GmW82.19G089600和GmW82.16G057600,响应非生物胁迫的GmW82.06G256600和GmW82.10G206900,以及参与茎的发育、结构维持、抗逆性及代谢调控的GmW82.13G274300。这些基因的空间表达分析表明,参与DNA的合成和修复以及非生物胁迫响应的基因在辐射处理的大豆种胚中高表达,参与茎的发育、结构维持、抗逆性及代谢调控的基因在未处理和辐射处理大豆种胚的上胚轴处均高表达,说明该基因可能在维持茎组织基本结构和功能中发挥重要作用。GO和KEGG富集分析进一步揭示,差异基因显著富集于细胞应激响应、DNA转录调控、氧化应激反应及谷胱甘肽代谢等通路,这些通路在植物逆境适应和胁迫耐受中具有关键作用。本研究通过空间转录组技术揭示了大豆种胚在辐射胁迫下的基因表达变化及其空间分布特征,识别出多个与DNA修复和胁迫响应相关的关键基因,反映了辐射对种胚细胞功能状态的影响,为理解辐射诱变过程中基因表达调控机制提供了基础数据支持。
[1] Petereit J, Marsh J I, Bayer P E, Danilevicz M F, Thomas W J W, Batley J, Edwards D. Genetic and genomic resources for soybean breeding research. Plants, 2022, 11: 1181. [2] Lin F, Chhapekar S S, Vieira C C, Da Silva M P, Rojas A, Lee D, Liu N X, Pardo E M, Lee Y C, Dong Z M, et al. Breeding for disease resistance in soybean: a global perspective. Theor Appl Genet, 2022, 135: 3773–3872.
[3] 王雪. 碳离子束辐照大豆的诱变效应. 中国科学院大学(中国科学院东北地理与农业生态研究所)博士研究生论文, 吉林长春, 2021.
[4] 陈霞. 不同类型电离辐射对经济作物橡胶草的生物学效应研究. 中国科学院大学(中国科学院近代物理研究所)博士学位论文, 甘肃兰州, 2023. [5] Havlickova L, He Z S, Berger M, Wang L H, Sandmann G, Chew Y P, Yoshikawa G V, Lu G Y, Hu Q, Banga S S, et al. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. Plant Biotechnol J, 2024, 22: 738–750.
[6] 赵星棋, 岳明昊, 王志新, 郑伟, 李灿东, 张振宇, 徐杰飞, 王象然, 郭美玲. 大豆辐射诱变育种相关研究进展. 中国种业, 2025, (2): 13–17. [7] Kim J M, Lyu J I, Kim D G, Hung N N, Seo J S, Ahn J W, Lim Y J, Eom S H, Ha B K, Kwon S J. Genome wide association study to detect genetic regions related to isoflavone content in a mutant soybean population derived from radiation breeding. Front Plant Sci, 2022, 13: 968466. [8] Ren H L, Zhang B X, Zhang C L, Liu X L, Wang X Y, Zhang F Y, Zhao K Z, Yuan R Q, Abdelghany A M, Lamlom S F. Uncovering molecular mechanisms of soybean response to 12C6+ heavy ion irradiation through integrated transcriptomic and metabolomic profiling. Ecotoxicol Environ Saf, 2025, 289: 117689. [9] Zhang B X, Zhang H L, Xia Y J. Harnessing spatial transcriptomics for advancing plant regeneration research. Trends Plant Sci, 2024, 29: 718–720. [10] Yin R L, Xia K K, Xu X. Spatial transcriptomics drives a new era in plant research. Plant J, 2023, 116: 1571–1581. [11] Liu Z J, Kong X Y, Long Y P, Liu S R, Zhang H, Jia J B, Cui W H, Zhang Z M, Song X W, Qiu L J, et al. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat Plants, 2023, 9: 515–524. [12] Pang X Y, Sun J J, Jia J Y, Trusov Y, Chandora R, Botella J R, Li X, Gu S B. Integration of single-cell and spatial RNA sequencing uncovers spatiotemporal transition of fruit senescence trajectory from exocarp to mesocarp in Pitaya (Hylocereus undatus). Postharvest Biol Technol, 2024, 213: 112954. [13] Wang T, Wang F H, Deng S H, Wang K L, Feng D, Xu F, Guo W J, Yu J, Wu Y, Wuriyanghan H, et al. Single-cell transcriptomes reveal spatiotemporal heat stress response in maize roots. Nat Commun, 2025, 16: 177. [14] Jin Y R, Yan H D, Zhu X, Yang Y C, Jia J Y, Sun M, Najeeb A, Luo J C, Wang X S, He M, et al. Single-cell transcriptomes reveal spatiotemporal heat stress response in pearl millet leaves. New Phytol, 2025, 247: 637–650. [15] Khare V, Gupta S K, Manjaya J G. Exploring differential radiosensitivity in soybean genotypes exposed to gamma rays and determining optimal doses for induced mutagenesis. Appl Radiat Isot, 2025, 220: 111778. [16] Gudkov S V, Grinberg M A, Sukhov V, Vodeneev V. Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radioact, 2019, 202: 8–24. [17] Geras’kin S. Plant adaptation to ionizing radiation: mechanisms and patterns. Sci Total Environ, 2024, 916: 170201. [18] Caplin N, Willey N. Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Front Plant Sci, 2018, 9: 847.
[19] 张菲, 李英主, 杜鹏飞, 白史且, 鄢家俊. UV-B胁迫下植物的生理适应及分子应答. 安徽农学通报, 2025, 31(8): 41–48.
[20] 李良博, 唐天向, 海梅荣, 陈军文, 周平. 植物对UV-B辐射增强的响应及其分子机制. 中国农学通报, 2015, 31(13): 159–163. [21] D’Angiolella V, Donato V, Forrester F M, Jeong Y T, Pellacani C, Kudo Y, Saraf A, Florens L, Washburn M P, Pagano M. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell, 2012, 149: 1023–1034. [22] Bao W Y, Zhang W J, Huang Y C, Zhao Y, Wu C, Duan L L, Wang L L, Yan S P. Protein kinase ATR inhibits E3 ubiquitin ligase CRL4PRL1 to stabilize ribonucleotide reductase in response to replication stress. Cell Rep, 2023, 42: 112685. [23] Kim J H, Ryu T H, Lee S S, Lee S, Chung B Y. Ionizing radiation manifesting DNA damage response in plants: an overview of DNA damage signaling and repair mechanisms in plants. Plant Sci, 2019, 278: 44–53. [24] Kryston T B, Georgiev A B, Pissis P, Georgakilas A G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res Mol Mech Mutagen, 2011, 711: 193–201. [25] Dowlath M J H, Karuppannan S K, Sinha P, Dowlath N S, Arunachalam K D, Ravindran B, Chang S W, Nguyen-Tri P, Nguyen D D. Effects of radiation and role of plants in radioprotection: a critical review. Sci Total Environ, 2021, 779: 146431. [26] He Y M, Li D, Ye H P, Zhu J, Chen Q M, Liu R. Oxidative stress-induced CDO1 glutathionylation regulates cysteine metabolism and sustains redox homeostasis under ionizing radiation. Redox Biol, 2025, 83: 103656. [27] Song X L, Yin X Y, Zhu Y J, Su Q, Bao Y. Evolution of duplicated glutathione metabolic pathway in Gossypium hirsutum and its response to UV-B stress. Ecol Evol, 2024, 14: e70537. [28] Liang Y, Yuan Q Q, Zheng Q J, Mei Z L, Song Y W, Yan H, Yang J J, Wu S H, Yuan J, Wu W. DNA Damage Atlas: an atlas of DNA damage and repair. Nucleic Acids Res, 2024, 52: D1218–D1226. [29] Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair, 2023, 130: 103547. |
[1] | 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239. |
[2] | 王克晶, 李向华. 我国珍稀的大豆属多年生烟豆和短绒野大豆物种遗传资源濒危性评估分析[J]. 作物学报, 2025, 51(8): 2009-2019. |
[3] | 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008. |
[4] | 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756. |
[5] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
[6] | 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247. |
[7] | 殷丛丛, 李睿琦, 岳霈尧, 李晨, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用[J]. 作物学报, 2025, 51(5): 1248-1260. |
[8] | 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631. |
[9] | 陈敏, 贾蓉, 张金传, 张辰煜, 褚俊聪, 姚伟, 葛军勇, 王星宇, 杨亚东, 曾昭海, 臧华栋. 半干旱区燕麦与豆科作物带状复合种植的产量优势及氮素利用特征研究[J]. 作物学报, 2025, 51(10): 2727-2737. |
[10] | 李威, 朱玉鹏, 孙宾成, 温有祥, 吴宗声, 徐一帆, 宋雯雯, 徐彩龙, 吴存祥. 转基因大豆结合免耕平作实现东北地区大豆生产轻简化[J]. 作物学报, 2025, 51(10): 2738-2749. |
[11] | 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284. |
[12] | 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173. |
[13] | 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266. |
[14] | 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186. |
[15] | 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130. |
|