欢迎访问作物学报,今天是

作物学报

• •    

渗透胁迫下不同玉米品种幼苗ABA合成及生理生化响应差异

张清怡,肖义涛,李秋霞,张钰石,张明才*,李召虎   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学院, 北京100193
  • 收稿日期:2025-08-05 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-05
  • 通讯作者: 张明才, E-mail: zmc1214@163.com
  • 基金资助:
    本研究由新疆生产建设兵团重大科技项目(2024AB030-01)和北京市科技计划项目(Z221100006422005)资助。

Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress#br#
#br#

Zhang Qing-Yi,Xiao Yi-Tao,Li Qiu-Xia,Zhang Yu-Shi,Zhang Ming-Cai*,Li Zhao-Hu   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
  • Received:2025-08-05 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-05
  • Supported by:
    This study was supported by the Major Science and Technology Projects of the Xinjiang Production and Construction Corps (2024AB030-01) and the Beijing Science and Technology Plan Project (Z221100006422005).

摘要: 脱落酸(ABA)是响应干旱胁迫的重要逆境信号转导物质,但玉米品种干旱敏感性与ABA积累的内在关系仍不清晰。本研究以郑单958、农大364和农大3138为供试品种,采用聚乙二醇(PEG-6000)模拟渗透胁迫,比较研究渗透胁迫对玉米幼苗生长、ABA合成与积累及其生理生化特征的影响,探究ABA在不同玉米品种响应渗透胁迫的作用机制。主要研究结果如下渗透胁迫显著抑制不同品种幼苗地上部与根系的生长与生物量积累,降低了植株相对含水量。其中郑单958、农大3138和农大364的地上部和地下部生物量分别抑制32.8%5.9%37.1%10.5%43.8%20.1%。同时,渗透胁迫显著上调了不同品种叶片和根系中ABA合成关键基因ZmNCED1ZmAO2ZmABA3的表达水平,其中郑单958增幅最大,较对照最大增加1.5~12.9而农大364增幅最小,较对照仅增加0.4~1.3倍。渗透胁迫增强了ABA合成关键酶醛氧化酶活性,促进了ABA积累,其中农大364的叶片和根中ABA积累增幅最小,分别为140%90%,而郑单958最大。此外,渗透胁迫显著提高了玉米抗氧化酶PODSODCAT活性,不同品种间增幅与ABA含量的增幅规律一致。从不同品种植株生长、ABA合成和积累相关生理生化特征、抗氧化酶活性等对渗透胁迫的响应特征进行综合分析,品种抗旱性表现为郑单958 >农大3138 >农大364。研究结果揭示了ABA在不同抗旱性玉米品种响应渗透胁迫中的作用机制,为抗旱品种选育和抗逆栽培措施构建提供依据。

关键词: 玉米, ABA, 渗透胁迫, 醛氧化酶, 抗氧化酶

Abstract:

Osmotic stress significantly inhibited the growth and biomass accumulation of both aboveground and belowground parts in seedlings of different maize cultivars, and reduced the relative water content (RWC) of the plants. Specifically, the aboveground and root biomass of Zhengdan 958, Nongda 3138, and Nongda 364 were reduced by 32.8% and 5.9%, 37.1% and 10.5%, and 43.8% and 20.1%, respectively. Meanwhile, drought stress markedly upregulated the expression of key ABA biosynthesis genes—including ZmNCED1, ZmAO2, and ZmABA3—in both leaves and roots across cultivars. Among them, Zhengdan 958 exhibited the greatest increase, with transcript levels rising 1.5- to 12.9-fold compared to the control, whereas Nongda 364 showed the smallest increase, ranging from 0.4- to 1.3-fold. Osmotic stress also enhanced the activity of aldehyde oxidase, a key enzyme in ABA biosynthesis, thereby promoting ABA accumulation. Among the cultivars, Nongda 364 exhibited the smallest ABA increase in leaves and roots (140% and 90%, respectively), while Zhengdan 958 showed the largest. In addition, osmotic stress significantly elevated the activities of antioxidant enzymes in maize, including POD, SOD, and CAT, with the degree of increase consistent with the trend of ABA accumulation among cultivars. A comprehensive analysis of plant growth, physiological and biochemical characteristics related to ABA biosynthesis and accumulation, and antioxidant enzyme activities under osmotic stress revealed that drought tolerance among the cultivars followed the order: Zhengdan 958 > Nongda 3138 > Nongda 364. These findings elucidate the role of ABA in mediating maize responses to osmotic stress in cultivars with varying drought tolerance and provide a theoretical foundation for breeding drought-tolerant cultivars and developing stress-resilient cultivation strategies.

Key words: maize, ABA, osmotic stress, aldehyde oxidase, antioxidant enzymes

[1] Zhang J B, Chen X X, Song Y J, et al. Integrative regulatory mechanisms of stomatal movements under changing climate. J Integr Plant Biol, 2024, 66: 368–393.

[2] Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteor Climatol, 2019, 58: 1233–1244.

[3] Wu G, Wei Z K, Wang Y X, et al. The mutual responses of higher plants to environment: physiological and microbiological aspects. Colloids Surf B Biointerfaces, 2007, 59: 113–119.

[4] 李红杰. PEG模拟干旱胁迫下冬瓜的生理指标变化及耐旱性. 分子植物育种, 2019, 17: 6792–6799.

Li H J. Physiological index variation and drought resistance of winter gourd under polyethylene dlycol simulation drought stress. Mol Plant Breed, 2019, 17: 6792–6799 (in Chinese with English abstract).

[5] 余为仆, 许晖, 李戎, . 水稻抗旱机理研究进展. 中南农业科技, 2024, 45(12): 227–233.

Yu W P, Xu H, Li R, et al. Research progress on drought resistance mechanism of rice. South Cent Agric Sci Technol, 2024, 45(12): 227–233 (in Chinese).

[6] Xiong L M, Zhu J K. Regulation of abscisic acid biosynthesis. Plant Physiol, 2003, 133: 29–36.

[7] Bittner F, Oreb M, Mendel R R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem, 2001, 276: 40381–40384.

[8] Xiong L M, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 13: 2063–2083.

[9] 刘贤德, 李晓辉, 李文华, . 玉米自交系苗期耐旱性差异分析. 玉米科学, 2004, 12(3): 63–65.

Liu X D, Li X H, Li W H, et al. Analysis on difference for drought responses of maize inberd lines at seedling stage. J Maize Sci, 2004, 12(3): 63–65 (in Chinese with English abstract).

[10] 张丽华, 赵洪祥, 谭国波, . 不同玉米杂交种抗旱性比较研究. 玉米科学, 2012, 20(3): 29–33.

Zhang L H, Zhao H X, Tan G B, et al. Comparative study on the drought resistance of maize hybrids. J Maize Sci, 2012, 20(3): 29–33 (in Chinese with English abstract).

[11] 赵洪兵, 黄亚群. 不同玉米杂交种抗旱性比较及抗旱性鉴定指标的研究. 华北农学报, 2007, 22(增刊2): 66–70.

Zhao H B, Huang Y Q. Study on the drought resistibility and related indicators for different maize hybrids. Acta Agric Boreali-Sin, 2007, 22(S2): 66–70 (in Chinese with English abstract).

[12] Zhang J, Yu H Y, Zhang Y S, et al. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot, 2016, 67: 1339–1355.

[13] Ali M, Afzal S, Parveen A, et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem, 2021, 158: 208–218.

[14] Seo M, Koiwai H, Akaba S, et al. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J, 2000, 23: 481–488.

[15] Zdunek-Zastocka E, Omarov R T, Koshiba T, et al. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions. J Exp Bot, 2004, 55: 1361–1369.

[16] Zhang L W, Mi X C, Shao H B, et al. Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil, 2011, 347: 211–220.

[17] Yan K, Chen P, Shao H B, et al. Photosynthetic characterization of Jerusalem artichoke during leaf expansion. Acta Physiol Plant, 2012, 34: 353–360.

[18] Fang P, Yao Q L, Chen F B. Morpho-physiological characteristics of maize (Zea mays L.) landraces under water stress. Philipp Agric Sci, 2011, 94: 323–328.

[19] Grzesiak M T, Marcinska I, Janowiak F, et al. The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant, 2012, 34: 1757–1764.

[20] 刘海龙, 郑桂珍, 关军锋, . 干旱胁迫下玉米根系活力和膜透性的变化. 华北农学报, 2002, 17(2): 20–22.

Liu H L, Zheng G Z, Guan J F, et al. Changes of root activity and membrane permeability under drought stress in maize. Acta Agric Boreali-Sin, 2002, 17(2): 20–22 (in Chinese with English abstract).

[21] Westgate M E, Boyer J S. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta, 1985, 164: 540–549.

[22] Zhu J M, Alvarez S, Marsh E L, et al. Cell wall proteome in the maize primary root elongation zone: II. region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol, 2007, 145: 1533–1548.

[23] Seo M, Peeters A, Koiwai H, et al. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA, 2000, 97: 12908–12913.

[24] Lu Y, Li Y J, Zhang J C, et al. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One, 2013, 8: e52126.

[25] Sharma A, Gupta A, Ramakrishnan M, et al. Roles of abscisic acid and auxin in plants during drought: a molecular point of view. Plant Physiol Biochem, 2023, 204: 108129.

[26] Nadarajah K K. ROS homeostasis inabiotic stress tolerance inplants. Int J Mol Sci, 2020, 21: 5208.

[27] Nasirzadeh L, Sorkhilaleloo B, Hervan E M, et al. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Res Commun, 2021, 49: 83–89.

[28] Tan B C, Schwartz S H, Zeevaart J A, et al. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235–12240.

[29] Burbidge A, Grieve T M, Jackson A, et al. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J, 1999, 17: 427–431.

[30] Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001, 27: 325–333.

[31] Bueno P, Piqueras A, Kurepa J, et al. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci, 1998, 138: 27–34.

[32] Guan L M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J, 2000, 22: 87–95.

[33] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42: 1265–1273.

[34] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401–2410.

[35] Hu X L, Jiang M Y, Zhang A Y, et al. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 2005, 223: 57–68.

[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[3] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[4] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[5] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[6] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[7] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[8] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[9] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[10] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[11] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[12] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[13] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[14] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
[15] 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!