• •
张清怡,肖义涛,李秋霞,张钰石,张明才*,李召虎
Zhang Qing-Yi,Xiao Yi-Tao,Li Qiu-Xia,Zhang Yu-Shi,Zhang Ming-Cai*,Li Zhao-Hu
摘要: 脱落酸(ABA)是响应干旱胁迫的重要逆境信号转导物质,但玉米品种干旱敏感性与ABA积累的内在关系仍不清晰。本研究以郑单958、农大364和农大3138为供试品种,采用聚乙二醇(PEG-6000)模拟渗透胁迫,比较研究渗透胁迫对玉米幼苗生长、ABA合成与积累及其生理生化特征的影响,探究ABA在不同玉米品种中响应渗透胁迫的作用机制。主要研究结果如下,渗透胁迫显著抑制不同品种幼苗地上部与根系的生长与生物量积累,降低了植株相对含水量。其中郑单958、农大3138和农大364的地上部和地下部生物量分别抑制32.8%和5.9%、37.1%和10.5%、43.8%和20.1%。同时,渗透胁迫显著上调了不同品种叶片和根系中ABA合成关键基因ZmNCED1、ZmAO2和ZmABA3的表达水平,其中郑单958增幅最大,较对照最大增加1.5~12.9倍,而农大364增幅最小,较对照仅增加0.4~1.3倍。渗透胁迫增强了ABA合成关键酶醛氧化酶活性,促进了ABA积累,其中农大364的叶片和根中ABA积累增幅最小,分别为140%和90%,而郑单958最大。此外,渗透胁迫显著提高了玉米抗氧化酶POD、SOD和CAT活性,不同品种间增幅与ABA含量的增幅规律一致。从不同品种的植株生长、ABA合成和积累相关生理生化特征、抗氧化酶活性等对渗透胁迫的响应特征进行综合分析,品种抗旱性表现为郑单958 >农大3138 >农大364。研究结果揭示了ABA在不同抗旱性玉米品种响应渗透胁迫中的作用机制,为抗旱品种选育和抗逆栽培措施构建提供依据。
| [1] Zhang J B, Chen X X, Song Y J, et al. Integrative regulatory mechanisms of stomatal movements under changing climate. J Integr Plant Biol, 2024, 66: 368–393. [2] Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteor Climatol, 2019, 58: 1233–1244. [3] Wu G, Wei Z K, Wang Y X, et al. The mutual responses of higher plants to environment: physiological and microbiological aspects. Colloids Surf B Biointerfaces, 2007, 59: 113–119. [4] 李红杰. PEG模拟干旱胁迫下冬瓜的生理指标变化及耐旱性. 分子植物育种, 2019, 17: 6792–6799. Li H J. Physiological index variation and drought resistance of winter gourd under polyethylene dlycol simulation drought stress. Mol Plant Breed, 2019, 17: 6792–6799 (in Chinese with English abstract). [5] 余为仆, 许晖, 李戎, 等. 水稻抗旱机理研究进展. 中南农业科技, 2024, 45(12): 227–233. Yu W P, Xu H, Li R, et al. Research progress on drought resistance mechanism of rice. South Cent Agric Sci Technol, 2024, 45(12): 227–233 (in Chinese). [6] Xiong L M, Zhu J K. Regulation of abscisic acid biosynthesis. Plant Physiol, 2003, 133: 29–36. [7] Bittner F, Oreb M, Mendel R R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem, 2001, 276: 40381–40384. [8] Xiong L M, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 13: 2063–2083. [9] 刘贤德, 李晓辉, 李文华, 等. 玉米自交系苗期耐旱性差异分析. 玉米科学, 2004, 12(3): 63–65. Liu X D, Li X H, Li W H, et al. Analysis on difference for drought responses of maize inberd lines at seedling stage. J Maize Sci, 2004, 12(3): 63–65 (in Chinese with English abstract). [10] 张丽华, 赵洪祥, 谭国波, 等. 不同玉米杂交种抗旱性比较研究. 玉米科学, 2012, 20(3): 29–33. Zhang L H, Zhao H X, Tan G B, et al. Comparative study on the drought resistance of maize hybrids. J Maize Sci, 2012, 20(3): 29–33 (in Chinese with English abstract). [11] 赵洪兵, 黄亚群. 不同玉米杂交种抗旱性比较及抗旱性鉴定指标的研究. 华北农学报, 2007, 22(增刊2): 66–70. Zhao H B, Huang Y Q. Study on the drought resistibility and related indicators for different maize hybrids. Acta Agric Boreali-Sin, 2007, 22(S2): 66–70 (in Chinese with English abstract). [12] Zhang J, Yu H Y, Zhang Y S, et al. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot, 2016, 67: 1339–1355. [13] Ali M, Afzal S, Parveen A, et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem, 2021, 158: 208–218. [14] Seo M, Koiwai H, Akaba S, et al. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J, 2000, 23: 481–488. [15] Zdunek-Zastocka E, Omarov R T, Koshiba T, et al. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions. J Exp Bot, 2004, 55: 1361–1369. [16] Zhang L W, Mi X C, Shao H B, et al. Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil, 2011, 347: 211–220. [17] Yan K, Chen P, Shao H B, et al. Photosynthetic characterization of Jerusalem artichoke during leaf expansion. Acta Physiol Plant, 2012, 34: 353–360. [18] Fang P, Yao Q L, Chen F B. Morpho-physiological characteristics of maize (Zea mays L.) landraces under water stress. Philipp Agric Sci, 2011, 94: 323–328. [19] Grzesiak M T, Marcinska I, Janowiak F, et al. The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant, 2012, 34: 1757–1764. [20] 刘海龙, 郑桂珍, 关军锋, 等. 干旱胁迫下玉米根系活力和膜透性的变化. 华北农学报, 2002, 17(2): 20–22. Liu H L, Zheng G Z, Guan J F, et al. Changes of root activity and membrane permeability under drought stress in maize. Acta Agric Boreali-Sin, 2002, 17(2): 20–22 (in Chinese with English abstract). [21] Westgate M E, Boyer J S. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta, 1985, 164: 540–549. [22] Zhu J M, Alvarez S, Marsh E L, et al. Cell wall proteome in the maize primary root elongation zone: II. region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol, 2007, 145: 1533–1548. [23] Seo M, Peeters A, Koiwai H, et al. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA, 2000, 97: 12908–12913. [24] Lu Y, Li Y J, Zhang J C, et al. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One, 2013, 8: e52126. [25] Sharma A, Gupta A, Ramakrishnan M, et al. Roles of abscisic acid and auxin in plants during drought: a molecular point of view. Plant Physiol Biochem, 2023, 204: 108129. [26] Nadarajah K K. ROS homeostasis inabiotic stress tolerance inplants. Int J Mol Sci, 2020, 21: 5208. [27] Nasirzadeh L, Sorkhilaleloo B, Hervan E M, et al. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Res Commun, 2021, 49: 83–89. [28] Tan B C, Schwartz S H, Zeevaart J A, et al. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235–12240. [29] Burbidge A, Grieve T M, Jackson A, et al. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J, 1999, 17: 427–431. [30] Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001, 27: 325–333. [31] Bueno P, Piqueras A, Kurepa J, et al. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci, 1998, 138: 27–34. [32] Guan L M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J, 2000, 22: 87–95. [33] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42: 1265–1273. [34] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401–2410. [35] Hu X L, Jiang M Y, Zhang A Y, et al. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 2005, 223: 57–68. |
| [1] | 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526. |
| [2] | 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306. |
| [3] | 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1和ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329. |
| [4] | 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340. |
| [5] | 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163. |
| [6] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
| [7] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. |
| [8] | 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837. |
| [9] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
| [10] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
| [11] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
| [12] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
| [13] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
| [14] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
| [15] | 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388. |
|
||