欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 539-551.doi: 10.3724/SP.J.1006.2026.55052

• 耕作栽培·生理生化 • 上一篇    下一篇

播种期对长江中游甘蓝型油菜光温资源利用效率和产量的影响

娄洪祥**,幸仁鹏**,汪波,王晶,徐正华,赵杰,蒯婕*,周广生   

  1. 华中农业大学植物科学技术学院 / 湖北洪山实验室 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
  • 收稿日期:2025-08-06 修回日期:2025-11-18 接受日期:2025-11-18 出版日期:2026-02-12 网络出版日期:2025-11-24
  • 通讯作者: 蒯婕, E-mail: kuaijie@mail.hzau.edu.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2024YFD2300303), 湖北省专项资金(2023HBSTX4-03)和湖北省重点研发计划项目(2023BBB028)资助。

College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan

Lou Hong-Xiang**,Xing Ren-Peng**,Wang Bo,Wang Jing,Xu Zheng-Hua,Zhao Jie,Kuai Jie*,Zhou Guang-Sheng   

  1. College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan Laboratory / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2025-08-06 Revised:2025-11-18 Accepted:2025-11-18 Published:2026-02-12 Published online:2025-11-24
  • Contact: 蒯婕, E-mail: kuaijie@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2024YFD2300303), the Earmarked Fund of Hubei Province of China (2023HBSTX4-03), and the Key Research and Development Program of Hubei Province of China (2023BBB028).

摘要: 推迟冬油菜播种期可缓解长江中游地区稻油茬口矛盾,但迟播会使产量显著降低。为解析迟播和早播减产机制并探索增产途径,本研究以华油杂62和华油杂158为试验材料,于2018—2021年开展3年播种期田间试验(早播S1920适播S2101迟播S31010),系统分析产量、光温资源利用效率及碳代谢生理响应。研究结果表明:(1) S2提高了光温资源利用效率并实现了产量和产油量的显著提升。(2) S1相比,S2的生育期缩短,有效积温下降,但光温资源利用率显著提高;与S1S3相比,S2叶片碳代谢酶(Rubisco、果糖1,6-二磷酸酶和蔗糖合成酶)活性上升,碳代谢水平的提高促进了叶片可溶性糖积累。(3) S2的花期冠层截光率和单叶光合能力均高于S1S3,伤流液可溶性糖与氨基酸含量显著上升,促进光合产物向角果高效转运。因此,适播油菜充分利用光温资源,提高了积温生产效率和光能利用率,协同提高产量和品质。光温资源利用不足是迟播产量的重要限制因素,这对迟播油菜品种选育和栽培调控具有理论和指导意义。

关键词: 油菜, 播种期, 资源利用效率, 产量, 碳代谢

Abstract: Delaying the sowing date of winter rapeseed can help alleviate the cropping conflict between rice and rapeseed in the Middle Yangtze River region; however, both early and late sowing significantly reduce yield. To investigate the mechanisms underlying yield reduction associated with early and late sowing and to explore strategies for improving yield, a three-year field experiment was conducted from 2018 to 2021 with three sowing dates: early sowing (S1, September 20), optimal sowing (S2, October 1), and late sowing (S3, October 10). This study systematically analyzed yield performance, light and temperature resource use efficiency, and physiological responses related to carbon metabolism. The results showed that: (1) S2 improved the utilization efficiency of light and temperature resources, leading to higher yield and oil production; (2) Compared with S1, S2 exhibited a shorter growth period and a gradual reduction in effective accumulated temperature, yet significantly enhanced the efficiency of light and temperature resource use. Compared with both S1 and S3, S2 also showed higher activities of key carbon metabolism enzymes in leaves (Rubisco, fructose-1,6-bisphosphatase, and sucrose synthase), which promoted soluble sugar accumulation. (3) At the flowering stage, S2 had a higher canopy light interception rate and single-leaf photosynthetic capacity than S1 and S3, along with significantly increased soluble sugar and amino acid contents in bleeding sap, facilitating the efficient transport of photosynthates to siliques. In conclusion, sowing rapeseed at an optimal date enables more efficient use of light and temperature resources, improves accumulated temperature productivity and light energy utilization, and synergistically enhances both yield and seed quality. Insufficient utilization of light and temperature resources is a major limiting factor for yield in late-sown rapeseed, and these findings provide theoretical and practical guidance for variety selection and cultivation strategies under late sowing conditions.

Key words: Brassica napus, sowing date, resource use efficiency, yield, carbon metabolism

[1] Li L F, Olsen K M. To have and to hold: selection for seed and fruit retention during crop domestication. Curr Top Dev Biol, 2016, 119: 63–109.

[2] Li X Y, Zuo Q S, Chang H B, et al. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97–105.

[3] Zhang Y F, Wu H, Yao M Y, et al. Estimation of nitrogen runoff loss from croplands in the Yangtze River Basin: a meta-analysis. Environ Pollut, 2021, 272: 116001.

[4] Deng N Y, Grassini P, Yang H S, et al. Closing yield gaps for rice self-sufficiency in China. Nat Commun, 2019, 10: 1725.

[5] Yu X, Xu L, Yuan S, et al. Resource use efficiencies, environmental footprints and net ecosystem economic benefit of direct-seeded double-season rice in Central China. J Clean Prod, 2023, 393: 136249.

[6] Rizzo G, Monzon J P, Tenorio F A, et al. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proc Natl Acad Sci USA, 2022, 119: e2113629119.

[7] 张树杰, 张春雷. 气候变化对我国油菜生产的影响. 农业环境科学学报, 2011, 30: 1749–1754.

Zhang S J, Zhang C L. Influences of climate changes on oilseed rape production in China. J Agro-Environ Sci, 2011, 30: 1749–1754 (in Chinese with English abstract).

[8] MacDuff J H, Hopper M J, Wild A. The effect of root temperature on growth and uptake of ammonium and nitrate by Brassica napus L. in flowing solution culture: I. GROWTH. J Exp Bot, 1987, 38: 42–52.

[9] Farooq M, Basra S M A, Rehman H, et al. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J Agron Crop Sci, 2008, 194: 55–60.

[10] Caviglia O P, Melchiori R J M, Sadras V O. Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops. Field Crops Res, 2014, 168: 27–37.

[11] 李强, 陈跃华, 林萍, . 播期对冬油菜干物质积累及经济性状的影响. 西南农业学报, 2010, 23(1): 51–55.

Li Q, Chen Y H, Lin P, et al. Effects of sowing date on dry matter accumulation and economic characteristics of winter rapeseed. Southwest China J Agric Sci, 2010, 23(1): 51–55 (in Chinese with English abstract).

[12] Siddik M A, Zhang J, Chen J, et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur J Agron, 2019, 106: 30–38.

[13] 马霓, 张春雷, 李俊, . 播期和密度对免耕直播油菜生长及产量的影响. 湖北农业科学, 2010, 49: 1580–1583.

Ma N, Zhang C L, Li J, et al. Effects of sowing date and plant density on growth and yield of direct seeding rapeseed (Brassica napus L.) under no tillage cultivation condition. Hubei Agric Sci, 2010, 49: 1580–1583 (in Chinese with English abstract).

[14] 陆志峰, 鲁剑巍, 任涛, . 播期对中双11油菜干物质和养分积累的影响. 中国农学通报, 2014, 30(6): 140–147.

Lu Z F, Lu J W, Ren T, et al. Effects of sowing date on dry matter and nutrient accumulation of‘Zhongshuang11'. Chin Agric Sci Bull, 2014, 30(6): 140–147 (in Chinese with English abstract).

[15] Scott R K, Ogunremi E A, Ivins J D, et al. The effect of sowing date and season on growth and yield of oilseed rape (Brassica napus). J Agric Sci, 1973, 81: 277–285.

[16] Ozer H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur J Agron, 2003, 19: 453–463.

[17] Sturm D J, Kunz C, Peteinatos G, et al. Do cover crop sowing date and fertilization affect field weed suppression? Plant Soil Environ, 2017, 63: 82–88.

[18] 巩若琳, 宋波, 杨志叶, . 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49: 2777–2792.

Gong R L, Song B, Yang Z Y, et al. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agron Sin, 2023, 49: 2777–2792 (in Chinese with English abstract).

[19] Luo T, Zhang J, Khan M N, et al. Temperature variation caused by sowing dates significantly affects floral initiation and floral bud differentiation processes in rapeseed (Brassica napus L.). Plant Sci, 2018, 271: 40–51.

[20] Dogiwal G, Pannu R K, Satishkumar, et al. Effect of sowing dates on allocation of current photosynthates to different plant parts at various growth stages of wheat varieties. Ann Biol, 2005, 21: 23–27.

[21] Huang M, Fang S L, Cao F B, et al. Early sowing increases grain yield of machine-transplanted late-season rice under single-seed sowing. Field Crops Res, 2020, 253: 107832.

[22] Hafeez A, Ali S, Ma X L, et al. Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density. Ind Crops Prod, 2018, 124: 369–381.

[23] Waalen W, Øvergaard S I, Åssveen M, et al. Winter survival of winter rapeseed and winter turnip rapeseed in field trials, as explained by PPLS regression. Eur J Agron, 2013, 51: 81–90.

[24] Kamh M, Wiesler F, Ulas A, et al. Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J Plant Nutr Soil Sci, 2005, 168: 130–137.

[25] Wang G L, Ding G D, Li L, et al. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Ann Bot, 2014, 114: 549–559.

[26] 徐冉, 陈松, 徐春梅, . 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制. 作物学报, 2023, 49: 1630–1642.

Xu R, Chen S, Xu C M, et al. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of Japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. Acta Agron Sin, 2023, 49: 1630–1642 (in Chinese with English abstract).

[27] 廖桂平, 官春云. 甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究. 作物学报, 2002, 28: 52–58.

Liao G P, Guan C Y. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed (Brassica napus). Acta Agron Sin, 2002, 28: 52–58 (in Chinese with English abstract).

[28] Schubert S, Mengel K. Effect of light intensity on proton extrusion by roots of intact maize plants. Physiol Plant, 1986, 67: 614–619.

[29] Tang M, Cheng W X, Zeng H, et al. Light intensity controls rhizosphere respiration rate and rhizosphere priming effect of soybean and sunflower. Rhizosphere, 2019, 9: 97–105.

[30] 娄洪祥, 黄肖玉, 江萌, . 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究. 作物学报, 2024, 50: 2091–2105.

Lou H X, Huang X Y, Jiang M, et al. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin. Acta Agron Sin, 2024, 50: 2091–2105 (in Chinese with English abstract).

[31] 谌洁, 吕腾飞, 王志强, . 青菜/油菜茬口下水稻栽植方式对温光资源利用和产量的影响. 应用生态学报, 2022, 33: 405–414.

Shen J, Lyu T F, Wang Z Q, et al. Effects of planting methods on the utilization of temperature and sunshine resources and yield of rice under cabbage/rape-paddy cropping system. Chin J Appl Ecol, 2022, 33: 405–414 (in Chinese with English abstract).

[32] Lou H X, Zhao B W, Peng Y, et al. Auxin plays a key role in nitrogen and plant density-modulated root growth and yield in different plant types of rapeseed. Field Crops Res, 2023, 302: 109066.

[33] 聂晓玉, 李真, 王天尧, . 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响. 作物学报, 2024, 50: 493–505.

Nie X Y, Li Z, Wang T Y, et al. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed. Acta Agron Sin, 2024, 50: 493–505 (in Chinese with English abstract).

[34] Chaudhary A, Sewhag M, Hooda V S, et al. Effect of different dates of sowing on yield attributes, yield and quality of Barley (Hordeum vulgare L.) cultivars. J Appl Nat Sci, 2017, 9: 129–132.

[35] Mendham N J, Shipway P A, Scott R K. The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). J Agric Sci, 1981, 96: 389–416.

[36] Al Hoda Asghari B, Heravan E M, Alizadeh B, et al. Oil content, seed yield and morphological changes of canola cultivars in response to different sowing dates. Cro Res, 2018, 53: 38.

[37] 张亚杰, 李京, 彭红坤, . 油菜生育期动态模拟模型的构建. 作物学报, 2015, 41: 766–777.

Zhang Y J, Li J, Peng H K, et al. Dynamic simulation model for growth duration of rapeseed (Brassica napus). Acta Agron Sin, 2015, 41: 766–777 (in Chinese with English abstract).

[38] Gao J, Zhao B, Dong S T, et al. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2 stable isotope tracer in the field. Front Plant Sci, 2017, 8: 1821.

[39] Sharwood R E, Sonawane B V, Ghannoum O. Photosynthetic flexibility in maize exposed to salinity and shade. J Exp Bot, 2014, 65: 3715–3724.

[40] 张吉旺, 董树亭, 王空军, . 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33: 216–222.

Zhang J W, Dong S T, Wang K J, et al. Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007, 33: 216–222 (in Chinese with English abstract).

[41] Hiyane R, Hiyane S, Tang A C, et al. Sucrose feeding reverses shade-induced kernel losses in maize. Ann Bot, 2010, 106: 395–403.

[42] Hu J, Ren B Z, Dong S T, et al. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. Crop J, 2022, 10: 478–489.

[43] 张吉旺, 董树亭, 王空军, . 大田遮阴对夏玉米淀粉合成关键酶活性的影响. 作物学报, 2008, 34: 1470–1474.

Zhang J W, Dong S T, Wang K J, et al. Effects of shading in field on key enzymes involved in starch synthesis of summer maize. Acta Agron Sin, 2008, 34: 1470–1474 (in Chinese with English abstract).

[44] Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot, 2004, 51: 45–56.

[45] Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol, 2012, 15: 282–292.

[46] Peng B, Liu X W, Dong X J, et al. Root morphological traits of winter wheat under contrasting environments. J Agron Crop Sci, 2019, 205: 571–585.

[47] Wu W, Duncan R W, Ma B L. Quantification of canola root morphological traits under heat and drought stresses with electrical measurements. Plant Soil, 2017, 415: 229–244.

[48] 李小勇, 顾炽明, 刘康, . 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54: 3726–3736.

Li X Y, Gu C M, Liu K, et al. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Sci Agric Sin, 2021, 54: 3726–3736 (in Chinese with English abstract).

[1] 张译尹, 王斌, 王腾飞, 肖爱萍, 胡海英, 兰剑. 青贮玉米‖拉巴豆间作系统产量优势对空间配置的响应[J]. 作物学报, 2026, 52(2): 552-564.
[2] 许倍铭, 郝紫瑞, 冯健超, 马耕, 王丽芳, 谢迎新, 王晨阳, 马冬云. 氮磷减施对不同强筋小麦品种产量和品质及其土壤生物学特性的影响[J]. 作物学报, 2026, 52(2): 603-619.
[3] 马毅娜, 吴晓明玉, 李藕琪, 王圆, 陈丽, 张盈川, 赵伦, 文静, 傅廷栋, 沈金雄. Bna-miR1040-EIF3A模块调控油菜开花时间的功能研究[J]. 作物学报, 2026, 52(2): 349-362.
[4] 周琦翔, 朱艳, 汪楚博, 朱柏林, 李俊博, 宋利兵. 基于DSSAT模型模拟气候变化对新疆棉花物候期及产量的影响[J]. 作物学报, 2026, 52(2): 590-602.
[5] 刘吉昌, 李思烨, 李雪婷, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝, 任昊. 盐胁迫对不同耐盐型夏玉米品种根系生长及养分吸收效率的影响[J]. 作物学报, 2026, 52(2): 565-577.
[6] 李瑞, 余意雯, 王敦亮, 田婷, 孙灵湘, 陶玥玥, 孙华. 长江中下游油菜薹油兼用模式菜籽产量特征比较研究[J]. 作物学报, 2026, 52(2): 620-630.
[7] 朱家宝, 王先领, 樊友众, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜茎秆质量和抗倒伏性能的影响[J]. 作物学报, 2026, 52(1): 233-248.
[8] 石吕, 石晓旭, 韩笑, 单海勇, 刘旭杰, 张晋, 严旖旎, 李赢, 刘海翠, 魏亚凤, 杨美英, 薛亚光, 刘建, 张祖建. 氮肥减量与追施方式对小麦产量和氮肥利用效率及麦田N2O排放的影响[J]. 作物学报, 2026, 52(1): 202-220.
[9] 马婷婷, 郭晓江, 李豪, 邓梅, 蒲至恩, 李伟, 张亚洲, 王凤涛, 崔凤娟, 魏育明, 王际睿, 蒋云峰, 陈国跃. 利用小麦农家种孝感麦协同改良蜀麦753产量与抗病耐逆性的育种实践[J]. 作物学报, 2026, 52(1): 56-71.
[10] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 王瑾. 高产高油高油酸花生品种的生长发育及干物质生产特征[J]. 作物学报, 2026, 52(1): 191-201.
[11] 迟晓元, 刘庆, 张君, 赵旭红, 李美, 于天一, 潘丽娟, 许静, 姜骁, 殷祥贞, 马俊卿, 陈娜. 不同花生品种(系)耐盐碱性田间鉴定及各性状指标相关性研究[J]. 作物学报, 2026, 52(1): 85-98.
[12] 陈宣伊, 张健伟, 张向前, 葛国龙, 路战远, 郭星星, 马子惠, 李欣艺, 陈立宇. 大豆玉米不同条带间作对玉米带水热时空动态变化及玉米产量效益的影响[J]. 作物学报, 2026, 52(1): 178-190.
[13] 杨锐, 陈敬东, 黄郢, 张学昆, 周登文, 刘清云, 徐劲松, 谢伶俐, 许本波. 基于北纬30°分界的长江中游油菜增产策略研究[J]. 作物学报, 2026, 52(1): 99-117.
[14] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[15] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .