欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 565-577.doi: 10.3724/SP.J.1006.2026.53054

• 耕作栽培·生理生化 • 上一篇    下一篇

盐胁迫对不同耐盐型夏玉米品种根系生长及养分吸收效率的影响

刘吉昌**,李思烨**,李雪婷,王洪章,刘鹏,张吉旺,赵斌,任佰朝,任昊*   

  1. 山东农业大学农学院 / 黄淮海区域玉米技术创新中心, 山东泰安271018
  • 收稿日期:2025-07-18 修回日期:2025-11-18 接受日期:2025-11-18 出版日期:2026-02-12 网络出版日期:2025-11-26
  • 通讯作者: 任昊, E-mail: renhaosdau@126.com
  • 基金资助:
    本研究由山东省重点研发计划项目(2022CXPT014), 山东省现代农业产业技术体系建设项目(SDAIT-02-08)和国家重点研发计划项目(2022YFD1201704)资助。

Effects of salt stress on root growth and nutrient absorption efficiency of different salt-tolerant summer maize varieties

Liu Ji-Chang**,Li Si-Ye**,Li Xue-Ting,Wang Hong-Zhang,Liu Peng,Zhang Ji-Wang,Zhao Bin,Ren Bai-Zhao,Ren Hao*   

  1. College of Agriculture, Shandong Agricultural University / Huang-Huai-Hai Regional Maize Technology Innovation Center, Tai’an 271018, Shandong, China
  • Received:2025-07-18 Revised:2025-11-18 Accepted:2025-11-18 Published:2026-02-12 Published online:2025-11-26
  • Contact: 任昊, E-mail: renhaosdau@126.com
  • Supported by:
    This study was supported by the Key Research and Development Project of Shandong Province (2022CXPT014), the Shandong Province Key Agricultural Project for Application Technology Innovation (SDAIT-02-08), and the National Key Research and Development Program of China (2022YFD1201704).

摘要: 滨海盐碱地作为我国最具开发潜力的中低产田类型,是粮食产能挖潜的重点。盐分显著影响玉米根系分布与功能,进而影响水养吸收。明确盐胁迫对不同耐盐型玉米品种根系发育和养分吸收的影响,能够为盐碱地玉米丰产抗逆栽培理论和技术提供依据。本试验采用池栽试验与土柱试验相结合的方式,选用不同耐盐型玉米品种万盛69 (WS69,耐盐型)和登海605 (DH605,盐敏感型),设置低(medium-salinity stressMS,盐浓度1.5‰)和高(high-salinity stressHS,盐浓度3.0‰) 2个盐处理,以不施盐为对照(checkCK),研究盐胁迫对不同耐盐玉米品种根系发育、根系养分吸收、植株养分积累及产量的影响。结果表明,与CK相比,盐胁迫通过破坏玉米根系抗氧化酶代谢过程,降低根系活力,抑制根系发育,阻碍养分吸收和利用,导致养分积累量、地上部干物质积累和产量降低,耐盐品种产量降幅(6.90%~9.12%)显著低于盐敏感型品种(16.12%~27.42%)。与盐敏感品种DH605相比,耐盐品种WS69在高盐胁迫下根系抗氧化酶(SODPODCAT)活性仍显著升高,MDA含量较低,根系活力和根系呼吸速率降幅较低,具有较高的根长、根表面积和根体积,保证根系对养分的吸收,促进干物质的积累,适应性更强。综上所述,盐胁迫抑制根系发育和产量形成,耐盐型玉米品种在盐胁迫尤其是高盐胁迫下通过维持根系抗氧化系统活性和根系活力,从而保证根系发育和产量形成,减产幅度较低。

关键词: 夏玉米, 盐胁迫, 根系发育, 根系养分吸收效率, 产量

Abstract:

Coastal saline-alkali land, as one of the most promising types of medium- and low-yield fields in China, plays a critical role in tapping the potential of grain production. Salinity significantly affects the distribution and function of maize roots, thereby influencing water and nutrient uptake. Understanding the effects of salt stress on root development and nutrient absorption in maize varieties with differing salt tolerance provides a theoretical and technical foundation for high-yield, stress-resilient maize cultivation in saline-alkali soils. In this study, both pool culture and soil column experiments were conducted using two maize varieties—Wansheng 69 (WS69, salt-tolerant) and Denghai 605 (DH605, salt-sensitive). Three salinity treatments were applied: control (CK, no salt), medium salinity stress (MS, 1.5‰), and high salinity stress (HS, 3.0‰). The effects of salt stress on root development, nutrient uptake, plant nutrient accumulation, and yield were comprehensively evaluated. Results showed that, compared with CK, salt stress disrupted the antioxidant enzyme metabolism in maize roots, reduced root activity, inhibited root growth, and impaired nutrient uptake and utilization, ultimately leading to reduced nutrient accumulation, shoot dry matter, and yield. Yield reduction in the salt-tolerant variety (6.90%–9.12%) was significantly lower than that in the salt-sensitive variety (16.12%–27.42%). Under high salinity, WS69 exhibited significantly higher antioxidant enzyme (SOD, POD, CAT) activities, lower malondialdehyde (MDA) content, lower root respiration rate, and greater root length, surface area, and volume compared to DH605. These traits helped maintain nutrient absorption, promoted dry matter accumulation, and conferred stronger adaptability. In conclusion, salt stress inhibits root development and yield formation. Salt-tolerant maize varieties can maintain antioxidant enzyme activity and root vitality under salt stress—especially under high salinity—thereby supporting root development and yield stability, with relatively lower yield losses.

Key words: summer maize, salt stress, root development, nutrient uptake efficiency of roots, yield

[1] 张金鑫, 葛均筑, 马玮, 等. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展. 作物学报, 2023, 49: 879–892.

Zhang J X, Ge J Z, Ma W, et al. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain. Acta Agron Sin, 2023, 49: 879–892 (in Chinese with English abstract).

[2] 王龙, 李静, 钱晨, 等. 盐胁迫对油菜生理特征和菜籽产量品质的影响. 作物学报, 2024, 50: 1597–1607.

Wang L, Li J, Qian C, et al. Effects of salt stress on yield, quality, and physiology in rapeseed. Acta Agron Sin, 2024, 50: 1597–1607 (in Chinese with English abstract).

[3] 董睿潇. 不同有机物料组合对滨海盐碱土壤有机碳固持及质量提升的影响. 中国农业科学院硕士学位论文, 北京, 2024.

Dong R X. Effects of Combinations of Different Organic Materials on Organic Carbon Sequestration and Quality Improvement of Coastal Saline-alkali Soil. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2024 (in Chinese with English abstract).

[4] 闫晓宇, 郭文君, 秦都林, 等. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累养分吸收及产量的影响. 作物学报, 2022, 48: 1235–1247.

Yan X Y, Guo W J, Qin D L, et al. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil. Acta Agron Sin, 2022, 48: 1235–1247 (in Chinese with English abstract).

[5] 孙照华, 任昊, 王洪章, 等. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响. 作物学报, 2024, 50: 2383–2395.

Sun Z H, Ren H, Wang H Z, et al. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil. Acta Agron Sin, 2024, 50: 2383–2395 (in Chinese with English abstract).

[6] 李少昆, 赵久然, 董树亭, . 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941–1959.

Li S K, Zhao J R, Dong S T, et al. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941–1959 (in Chinese with English abstract).

[7] 刘晓, 刘晓红, 宋姝, 等. 盐碱胁迫下植物体内离子平衡调控的机制. 植物生理学报, 2023, 59: 715–726.

Liu X, Liu X H, Song S, et al. Regulation of ion homeostasis for salinity tolerance in plants. Plant Physiol J, 2023, 59: 715–726 (in Chinese with English abstract).

[8] 付海奇, 刘晓, 宋姝, 等. 次生代谢物调控植物抵抗盐碱胁迫的机制. 植物生理学报, 2023, 59: 727–740.

Fu H Q, Liu X, Song S, et al. Mechanisms of secondary metabolites regulating plant resistance to salinity and alkali stress. Plant Physiol J, 2023, 59: 727–740 (in Chinese with English abstract).

[9] El-Esawi M A, Alaraidh I A, Alsahli A A, et al. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem, 2018, 132: 375–384.

[10] Guo H J, Huang Z J, Li M Q, et al. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep, 2020, 10: 21844.

[11] Hu D D, Dong S T, Zhang J W, et al. Endogenous hormones improve the salt tolerance of maize (Zea mays L.) by inducing root architecture and ion balance optimizations. J Agron Crop Sci, 2022, 208: 662–674.

[12] 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础. 中国农业科学, 2017, 50: 4055–4071.

Lyu C G, Li X, Chen G X. Photosynthetic characteristics and its physiological basis of super high-yielding hybrid rice liangyoupeijiu. Sci Agric Sin, 2017, 50: 4055–4071 (in Chinese with English abstract).

[13] 赵莹, 杨克军, 赵长江, 等. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47: 3962–3972.

Zhao Y, Yang K J, Zhao C J, et al. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings. Sci Agric Sin, 2014, 47: 3962–3972 (in Chinese with English abstract).

[14] 李雪婷, 任昊, 王洪章, 等. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响. 作物学报, 2025, 51: 1091–1101.

Li X T, Ren H, Wang H Z, et al. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties. Acta Agron Sin, 2025, 51: 1091–1101 (in Chinese with English abstract).

[15] Radanielson A M, Gaydon D S, Rahman Khan M M, et al. Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Res, 2018, 229: 27–36.

[16] 周振玲, 林兵, 周群, 等. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制. 中国水稻科学, 2023, 37: 153–165.

Zhou Z L, Lin B, Zhou Q, et al. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms. Chin J Rice Sci, 2023, 37: 153–165 (in Chinese with English abstract).

[17] 韦还和, 张徐彬, 葛佳琳, 等. 盐胁迫对水稻颖花形成及籽粒充实的影响. 作物学报, 2021, 47: 2471–2480.

Wei H H, Zhang X B, Ge J L, et al. Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.). Acta Agron Sin, 2021, 47: 2471–2480 (in Chinese with English abstract).

[18] 韦还和, 张翔, 朱旺, . 盐胁迫对水稻籽粒灌浆特性及产量形成的影响. 作物学报, 2024, 50: 734–746.

Wei H H, Zhang X, Zhu W, et al. Effects of salinity stress on grain-filling characteristics and yield of rice. Acta Agron Sin, 2024, 50: 734–746 (in Chinese with English abstract).

[19] 邓杰, 孙丽芳, 王霞, 等. 89份玉米自交系萌发期耐盐碱性综合评价. 玉米科学, 2020, 28(4): 15–21.

Deng J, Sun L F, Wang X, et al. Comprehensive evaluation of salt tolerance and alkalinity of 89 maize inbred lines during germination. J Maize Sci, 2020, 28(4): 15–21 (in Chinese with English abstract).

[20] 刘威帆, 屈小玉, 刘昊, . 不同耐盐型玉米幼苗抵御盐胁迫的途径及差异基因表达. 植物营养与肥料学报, 2025, 31: 730–744.

Liu W F, Qu X Y, Liu H, et al. Pathways and differential gene expression in salt-tolerant and salt-sensitive maize seedlings under salt stress. J Plant Nutr Fert, 2025, 31: 730–744 (in Chinese with English abstract).

[21] 颜佳倩, 顾逸彪, 薛张逸, . 耐盐性不同水稻品种对盐胁迫的响应差异及其机制. 作物学报, 2022, 48: 1463–1475.

Yan J Q, Gu Y B, Xue Z Y, et al. Different responses of rice cultivars to salt stress and the underlying mechanisms. Acta Agron Sin, 2022, 48: 1463–1475 (in Chinese with English abstract).

[22] 赵世杰, 苍晶. 植物生理学实验指导. 北京: 中国农业出版社, 2015. pp 197–243.

Zhao S J, Cang J. Experimental Guide to Plant Physiology. Beijing: China Agriculture Press, 2015. pp 197–243 (in Chinese).

[23] 杨小环, 王立印, 李宏鑫, 等. 荞麦、高粱根系分泌物对玉米根边缘细胞和根生长的影响. 生态学报, 2023, 43: 3778–3788.

Yang X H, Wang L Y, Li H X, et al. Effects of root exudates from buckwheat and sorghum on the root border cells and root growth of maize. Acta Ecol Sin, 2023, 43: 3778–3788 (in Chinese with English abstract).

[24] 毛爽, 周万里, 杨帆, 等. 植物根系应答盐碱胁迫机理研究进展. 浙江农业学报, 2021, 33: 1991–2000.

Mao S, Zhou W L, Yang F, et al. Research progress on mechanism of plant roots response to salt-alkali stress. Acta Agric Zhejiangensis, 2021, 33: 1991–2000 (in Chinese with English abstract).

[25] 王芳, 周娟, 黄兴华, 等. 外源MeJA对盐胁迫下玉米幼苗生长及抗氧化酶基因表达的影响. 玉米科学, 2022, 30(2): 75–81.

Wang F, Zhou J, Huang X H, et al. Effects of exogenous MeJA on growth and antioxidant enzyme gene expression of maize seedlings under salt stress. J Maize Sci, 2022, 30(2): 75–81 (in Chinese with English abstract).

[26] 梁晓艳, 顾寅钰, 李萌, 等. 海水胁迫下藜麦根系形态发育及生理响应. 山东农业科学, 2019, 51(11): 28–34.

Liang X Y, Gu Y Y, Li M, et al. Morphological development and physiological response of quinoa roots under seawater stress. Shandong Agric Sci, 2019, 51(11): 28–34 (in Chinese with English abstract).

[27] Costa J H, Jolivet Y, Hasenfratz-Sauder M P, et al. Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance. J Plant Physiol, 2007, 164: 718–727.

[28] 张翠玉, 徐晓丽, 周长明, 等. 盐胁迫条件下不同施氮水平对玉米苗期生理特性的影响. 玉米科学, 2024, 32(7): 46–54.

Zhang C Y, Xu X L, Zhou C M, et al. Effects of different levels of nitrogen application on the physiological characteristics of maize seedlings under salt stress. J Maize Sci, 2024, 32(7): 46–54 (in Chinese with English abstract).

[29] 王洋, 张瑞, 刘永昊, 等. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105–117.

Wang Y, Zhang R, Liu Y H, et al. Rice response to salt stress and research progress in salt tolerance mechanism. Chin J Rice Sci, 2022, 36: 105–117 (in Chinese with English abstract).

[30] Hanin M, Ebel C, Ngom M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci, 2016, 7: 1787.

[31] Gerona M E B, Deocampo M P, Egdane J A, et al. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Sci, 2019, 26: 207–219.

[32] 王佳婕, 王正楠, BATOOL Maria, . 油菜和小麦响应盐碱胁迫的生理特性比较. 作物学报, 2025, 51: 1215–1229.

Wang J J, Wang Z N, Maria B, et al. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat. Acta Agron Sin, 2025, 51: 1215–1229 (in Chinese with English abstract).

[33] 翟荣荣, 叶胜海, 朱国富, 等. 纤维素合成相关基因调控水稻根系发育机制的研究进展. 分子植物育种, 2019, 17: 6691–6695.

Zhai R R, Ye S H, Zhu G F, et al. Research progress on the regulation of rice root development by genes related to cellulose synthesis. Mol Plant Breed, 2019, 17: 6691–6695 (in Chinese with English abstract).

[34] Julkowska M M, Hoefsloot H C J, Mol S, et al. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol, 2014, 166: 1387–1402.

[35] 顾逸彪, 颜佳倩, 薛张逸, . 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究. 作物杂志, 2023(2): 67–76.

Gu Y B, Yan J Q, Xue Z Y, et al. Different responses of roots of rice varieties to salt stress and the underlying mechanisms. Crops, 2023(2): 67–76 (in Chinese with English abstract).

[36] 谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019(4): 176–182.

Gu J J, Hu B W, Jia Y, et al. Effects of salt stress on root related traits and yield of rice. Crops, 2019(4): 176–182 (in Chinese with English abstract).

[37] 史晓龙, 郭佩, 任婧瑶, 等. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究. 中国农业科学, 2022, 55: 2927–2937.

Shi X L, Guo P, Ren J Y, et al. A salt stress tolerance effect study in peanut based on peanut// sorghum intercropping system. Sci Agric Sin, 2022, 55: 2927–2937 (in Chinese with English abstract).

[38] 付景, 陈露, 黄钻华, 等. 超级稻叶片光合特性和根系生理性状与产量的关系. 作物学报, 2012, 38: 1264–1276.

Fu J, Chen L, Huang Z H, et al. Relationship of leaf photosynthetic characteristics and root physiological traits with grain yield in super rice. Acta Agron Sin, 2012, 38: 1264–1276 (in Chinese with English abstract).

[39] 栾金华. 盐胁迫对粳稻农艺性状的影响及耐盐品种筛选. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.

Luan J H. Effects of Salt Stress on Agronomic Characters of Japonica Rice and Selection of Salt Tolerant Varieties. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020 (in Chinese with English abstract). 

[1] 张译尹, 王斌, 王腾飞, 肖爱萍, 胡海英, 兰剑. 青贮玉米‖拉巴豆间作系统产量优势对空间配置的响应[J]. 作物学报, 2026, 52(2): 552-564.
[2] 许倍铭, 郝紫瑞, 冯健超, 马耕, 王丽芳, 谢迎新, 王晨阳, 马冬云. 氮磷减施对不同强筋小麦品种产量和品质及其土壤生物学特性的影响[J]. 作物学报, 2026, 52(2): 603-619.
[3] 周琦翔, 朱艳, 汪楚博, 朱柏林, 李俊博, 宋利兵. 基于DSSAT模型模拟气候变化对新疆棉花物候期及产量的影响[J]. 作物学报, 2026, 52(2): 590-602.
[4] 张晴, 杨昱, 郭茜, 岳霈尧, 殷丛丛, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 大豆GmARA6a的克隆及响应盐胁迫的功能分析[J]. 作物学报, 2026, 52(2): 480-493.
[5] 娄洪祥, 幸仁鹏, 汪波, 王晶, 徐正华, 赵杰, 蒯婕, 周广生. 播种期对长江中游甘蓝型油菜光温资源利用效率和产量的影响[J]. 作物学报, 2026, 52(2): 539-551.
[6] 李瑞, 余意雯, 王敦亮, 田婷, 孙灵湘, 陶玥玥, 孙华. 长江中下游油菜薹油兼用模式菜籽产量特征比较研究[J]. 作物学报, 2026, 52(2): 620-630.
[7] 石吕, 石晓旭, 韩笑, 单海勇, 刘旭杰, 张晋, 严旖旎, 李赢, 刘海翠, 魏亚凤, 杨美英, 薛亚光, 刘建, 张祖建. 氮肥减量与追施方式对小麦产量和氮肥利用效率及麦田N2O排放的影响[J]. 作物学报, 2026, 52(1): 202-220.
[8] 马婷婷, 郭晓江, 李豪, 邓梅, 蒲至恩, 李伟, 张亚洲, 王凤涛, 崔凤娟, 魏育明, 王际睿, 蒋云峰, 陈国跃. 利用小麦农家种孝感麦协同改良蜀麦753产量与抗病耐逆性的育种实践[J]. 作物学报, 2026, 52(1): 56-71.
[9] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 王瑾. 高产高油高油酸花生品种的生长发育及干物质生产特征[J]. 作物学报, 2026, 52(1): 191-201.
[10] 迟晓元, 刘庆, 张君, 赵旭红, 李美, 于天一, 潘丽娟, 许静, 姜骁, 殷祥贞, 马俊卿, 陈娜. 不同花生品种(系)耐盐碱性田间鉴定及各性状指标相关性研究[J]. 作物学报, 2026, 52(1): 85-98.
[11] 陈宣伊, 张健伟, 张向前, 葛国龙, 路战远, 郭星星, 马子惠, 李欣艺, 陈立宇. 大豆玉米不同条带间作对玉米带水热时空动态变化及玉米产量效益的影响[J]. 作物学报, 2026, 52(1): 178-190.
[12] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[13] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[14] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[15] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .